World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Chemical Composition and Mass Size Distribution of Pm1 at an Elevated Site in Central East China : Volume 14, Issue 22 (20/11/2014)

By Zhang, Y. M.

Click here to view

Book Id: WPLBN0003993519
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Chemical Composition and Mass Size Distribution of Pm1 at an Elevated Site in Central East China : Volume 14, Issue 22 (20/11/2014)  
Author: Zhang, Y. M.
Volume: Vol. 14, Issue 22
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Hu, G. Y., Sun, J. Y., Zhang, X. Y., Wang, Y. Q., Wang, T. T., Shen, X. J.,...Wang, D. Z. (2014). Chemical Composition and Mass Size Distribution of Pm1 at an Elevated Site in Central East China : Volume 14, Issue 22 (20/11/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China. Size-resolved aerosol chemical compositions were measured continuously for 1.5 years from June 2010 to January 2012 with an aerosol mass spectrometer (AMS) to characterize the mass and size distributions (MSDs) of major chemical components in submicron particles (approximately PM1) at Mountain Tai (Mt. Tai), an elevated site in central east China. The annual mean mass concentrations of organic, sulfate, nitrate, ammonium, and chloride were 11.2, 9.2, 7.2, 5.8, and 0.95 μg m−3, respectively, which are much higher than those at most mountain sites in the USA and Europe, but lower than those at the nearby surface rural sites in China. A clear seasonality was observed for all major components throughout the study, with low concentration in fall and high in summer, and is believed to be caused by seasonal variations in planetary boundary layer (PBL) height, near surface pollutant concentrations and regional transport processes. Air masses were classified into categories impacted by PBL, lower free troposphere (LFT), new particle formation (NPF), in-cloud processes, and polluted aerosols. Organics dominated the PM1 mass during the NPF episodes, while sulfate contributed most to PM1 in cloud events. The average MSDs of particles between 30 and 1000 nm during the entire study for organics, sulfate, nitrate, and ammonium were approximately log-normal with mass median diameters (MMDs) of 539, 585, 542, and 545 nm, respectively. These values are slightly larger than those observed at ground sites within the North China Plain (NCP), likely due to the relative aged and well-mixed aerosol masses at Mt. Tai. There were no obvious differences in MMDs during the PBL, LFT, in-cloud and polluted episodes, but smaller MMDs, especially for organics, were observed during the NPF events. During the PBL, NPF, and polluted episodes, organics accounted for major proportions at smaller modes, and reached 70% at 100–200 nm particles in the polluted events. In cloud episodes, inorganics contributed 70% to the whole size range dominated by sulfate, which contributed 40% to small particles (100–200 nm), while organics occupied 20%, indicating that sulfate is a critical chemical component in cloud formation. Seven clusters of air masses were classified based on 72 h back-trajectory analysis. The majority of the regionally dispersed aerosols were found to be contributed from short distance mixed aerosols, mostly originated from the south with organics and sulfate as major components. Air masses from long range transport always brought clean and dry aerosols which resulted in low concentrations at Mt. Tai. AMS-PMF (positive matrix factorization) was employed to resolve the subtype of organics. Oxygenic organics aerosols (OAs) occupied 49, 56, 51, and 41% of OAs in the four seasons respectively, demonstrating that most OA were oxidized in summer due to strong photochemical reactions. Biomass burning OAs (BBOAs) accounted for 34% of OA in summer, mainly from field burning of agriculture residues, and coal combustion OAs (CCOAs) accounted for 22% of OA in winter from heating.

Summary
Chemical composition and mass size distribution of PM1 at an elevated site in central east China

Excerpt
Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, doi:10.5194/acp-9-6633-2009, 2009.; Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.; Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293, doi:10.5194/acp-6-5279-2006, 2006.; Allan, J. D., Baumgardner, D., Raga, G. B., Mayol-Bracero, O. L., Morales-García, F., García-García, F., Montero-Martínez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G. P., and Krämer, M.: Clouds and aerosols in Puerto Rico – a new evaluation, Atmos. Chem. Phys., 8, 1293–1309, doi:10.5194/acp-8-1293-2008, 2008.; Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, New York, 2013.; Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., and Fraile, R.: Research on aerosol sources and chemical composition: Past, current and emerging issues, Atmos. Res., 120–121, 1–28, 2012.; Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, jr. J. A., Hansen, J. E., and Hofmann, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 423–430, 1992.; Chatterjee, A., Adak, A., Singh, A. K., Srivastava, M. K., Ghosh, S. K., Tiwari, S., Devara, P. C. S., and Raha, S.: Aerosol chemistry over a high altitude station at northeastern Himalayas, India, PloS one, 5, e11122, doi:10.1371/journal.pone.0011122, 2010.; Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K. N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen, M., Petzold, A., and Baltensperger, U.: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 8, 407–423, doi:10.5194/acp-8-407-2008, 2008.; Decesari, S., Facchini, M. C., Fuzzi, S., McFiggans, G. B., Coe, H., and Bower, K. N.: The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACE-Asia, Atmos. Environ., 39, 211–222, 2005.; Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., Fuzzi, S., Marinoni, A., Cristofanelli, P., Duchi, R., Bonasoni, P., Vuillermoz, E., Cozic, J., Jaffrezo, J. L., and Laj, P.: Chemical composition of PM10 and PM1

 

Click To View

Additional Books


  • Physical-chemical Characterization of th... (by )
  • Ozone Vegetation Damage Effects on Gross... (by )
  • Technical Note: Regularization Performan... (by )
  • Particle Surface Area Dependence of Mine... (by )
  • Tropical, Oceanic, Deep Convective Cloud... (by )
  • Changes in the Production Rate of Second... (by )
  • Large-scale Planetary Disturbances in St... (by )
  • On the Relationship Between the Scatteri... (by )
  • Cirrus Cloud Occurrence as Function of A... (by )
  • The Influence of Cloud Chemistry on HoX ... (by )
  • Hygroscopic Properties of Nacl and Nano3... (by )
  • Classification of Clouds Sampled at the ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.