World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Variability and Trends in Dynamical Forcing of Tropical Lower Stratospheric Temperatures : Volume 14, Issue 24 (17/12/2014)

By Fueglistaler, S.

Click here to view

Book Id: WPLBN0003993597
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Variability and Trends in Dynamical Forcing of Tropical Lower Stratospheric Temperatures : Volume 14, Issue 24 (17/12/2014)  
Author: Fueglistaler, S.
Volume: Vol. 14, Issue 24
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Randel, W. J., Lin, P., Fueglistaler, S., Flannaghan, T. J., & Abalos, M. (2014). Variability and Trends in Dynamical Forcing of Tropical Lower Stratospheric Temperatures : Volume 14, Issue 24 (17/12/2014). Retrieved from

Description: Dept. of Geosciences / Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA. The contribution of dynamical forcing to variations and trends in tropical lower stratospheric 70 hPa temperature for the period 1980–2011 is estimated based on ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. The dynamical forcing is estimated from the tropical mean residual upwelling calculated with the momentum balance equation, and with a simple proxy based on eddy heat fluxes averaged between 25° and 75° in both hemispheres. The thermodynamic energy equation with Newtonian cooling is used to relate the dynamical forcing to temperature. The deseasonalised, monthly mean time series of all four calculations are highly correlated (~ 0.85) with temperature for the period 1995–2011 when variations in radiatively active tracers are small. All four calculations provide additional support to previously noted prominent aspects of the temperature evolution 1980–2011: an anomalously strong dynamical cooling (~ −1 to −2 K) following the Pinatubo eruption that partially offsets the warming from enhanced aerosol, and a few years of enhanced dynamical cooling (~ −0.4 K) after October 2000 that contributes to the prominent drop in water entering the stratosphere at that time. The time series of dynamically forced temperature calculated with the same method are more highly correlated and have more similar trends than those from the same reanalysis but with different methods. For 1980–2011 (without volcanic periods), the eddy heat flux calculations give a dynamical cooling of ~ −0.1 to ~ −0.25 K decade−1 (magnitude sensitive to latitude belt considered and reanalysis), largely due to increasing high latitude eddy heat flux trends in September and December–January. The eddy heat flux trends also explain the seasonality of temperature trends very well, with maximum cooling in January–February. Trends derived from momentum balance calculations show near-zero annual mean dynamical cooling, with weaker seasonal trends especially in December–January. These contradictory results arising from uncertainties in data and methods are discussed and put in context to previous analyses.

Variability and trends in dynamical forcing of tropical lower stratospheric temperatures

Abalos, M., Ploeger, F., Konopka, P., Randel, W. J., and Serrano, E.: Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes, Atmos. Chem. Phys., 13, 10787–10794, doi:10.5194/acp-13-10787-2013, 2013.; Avallone, L. M. and Prather, M. J.: Photochemical evolution of ozone in the lower tropical stratosphere, J. Geophys. Res., 101, 1457–1461, 1996.; Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The Quasi-Biennial Oscillation, Rev. Geophys., 39, 179–229, 2001.; Bohlinger, P., Sinnhuber, B.-M., Ruhnke, R., and Kirner, O.: Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends, Atmos. Chem. Phys., 14, 1679–1688, doi:10.5194/acp-14-1679-2014, 2014.; Hitchcock, T., Shepherd, T. G., Yoden, S., On the Approximation of Local and Linear Radiative Damping in the Middle Atmosphere, J. Atmos. Sci., 67, 2070–2085, 2010.; Butchart, N., Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Bruhl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deckert, R., Dhomse, S., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E., McLandress, C., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Sassi, F., Scinocca, J. F., Shibata, K., and Tian, W.: Chemistry-Climate Model Simulations of Twenty-First Century stratospheric Climate and Circulation Changes, J. Climate, 23, 5349–5374, doi:10.1175/2010JCLI3404.1, 2010.; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Borrmann, N., C.Delsol, Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.; Eyring, V., Shepherd, T. G., and Waugh, D. W. (Eds.): SPARC CCMVal, SPARC Report on the Evaluation of Chemistry-Climate Models, SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526, available at:, 2010.; Free, M.: The seasonal structure of temperature trends in the tropical lower stratosphere, J. Climate, 24, 859–866, 2011.; Fu, Q., Solomon, S., and Lin, P.: On the seasonal dependence of tropical lower-stratospheric temperature trends, Atmos. Chem. Phys., 10, 2643–2653, doi:10.5194/acp-10-2643-2010, 2010.; Fueglistaler, S.: Step-wise changes in stratospheric water vapor?, J. Geophys. Res., 117, D13302, doi:10.1029/2012JD017582, 2012.; Fueglistaler, S., Legras, B., Beljaars, A., Morcrette, J.-J., Simmons, A., Tompkins, A. M., and Uppala, S.: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses, Q. J. Roy. Meteor. Soc., 135, 21–37, 2009a.; Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: Tropical tropopause layer, Rev. Geophys., 47, RG1004,


Click To View

Additional Books

  • Microphysics and Heterogeneous Chemistry... (by )
  • Comment on Quantitative Performance Metr... (by )
  • Nitric Acid Partitioning in Cirrus Cloud... (by )
  • Model Study of the Cross-tropopause Tran... (by )
  • Horizontal Divergence of Typhoon-generat... (by )
  • Impact of Biomass Burning on Surface Wat... (by )
  • Observations of Oxidation Products Above... (by )
  • Volcanic Ash from Iceland Over Munich: M... (by )
  • Modelling of Cirrus Clouds – Part 1: Mod... (by )
  • The Sensitivity of Global Climate to the... (by )
  • Modelling the Contribution of Sea Salt a... (by )
  • Modelling Soil Dust Aerosol in the Bodél... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.