World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Temporal Changes in the Emissions of Ch4 and Co from China Estimated from Ch4 / Co2 and Co / Co2 Correlations Observed at Hateruma Island : Volume 14, Issue 3 (13/02/2014)

By Tohjima, Y.

Click here to view

Book Id: WPLBN0003993638
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Temporal Changes in the Emissions of Ch4 and Co from China Estimated from Ch4 / Co2 and Co / Co2 Correlations Observed at Hateruma Island : Volume 14, Issue 3 (13/02/2014)  
Author: Tohjima, Y.
Volume: Vol. 14, Issue 3
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Mukai, H., Kubo, M., Ganshin, A., Minejima, C., Kita, K., Machida, T.,...Katsumata, K. (2014). Temporal Changes in the Emissions of Ch4 and Co from China Estimated from Ch4 / Co2 and Co / Co2 Correlations Observed at Hateruma Island : Volume 14, Issue 3 (13/02/2014). Retrieved from

Description: Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan. In situ observation of the atmospheric CO2, CH4, and CO mixing ratios at Hateruma Island (HAT, 24.05° N, 123.80° E) often show synoptic-scale variations with correlative elevations during winter, associated with air transport from the East Asian countries. We examine winter (November– March) trends in ΔCH4 / ΔCO2, ΔCO / ΔCO2, and ΔCO / ΔCH4 observed at Hateruma over the period 1999 to 2010. To investigate the relationship between the East Asian emissions and the short-term variations in the atmospheric mixing ratios, we use the FLEXPART Lagrangian particle dispersion model (LPDM). The observed ratios ΔCH4 / ΔCO2 and ΔCO / ΔCO2 both show an overall gradual decrease over the study period due to a recent rapid increase in fossil fuel consumption in China. We note, however, that the decreasing rates of ΔCH4 / ΔCO2 and ΔCO / ΔCO2 show gradual decrease and increase, respectively, during the entire observation periods used in this study. The ΔCO / ΔCH4 slope, on the other hand, shows an increasing trend during 1999–2004 but a decrease during 2005–2010. Calculation of the concentration footprint for the atmospheric observation at HAT by using the FLEXPART LPDM indicates that most of the short-term variations are caused by emission variations from northern and eastern China. Combined with a set of reported emission maps, we have estimated the temporal changes in the annual CH4 and CO emissions from China under the assumption that the estimate of the fossil-fuel-derived CO2 emissions based on the energy statistics are accurate. The estimated annual CH4 emissions, corresponding to nonseasonal sources or anthropogenic sources without rice fields, show a nearly constant value of 39 ± 7 TgCH4 yr−1 during 1998–2002, and then gradually increase to 46 ± 8 TgCH4 yr−1 in 2009/2010. The estimated annual CO emissions increase from 134 ± 32 TgCO yr−1 in 1998/1999 to 182 ± 42 TgCO yr−1 in 2004/2005, level off after 2005, and then slightly decrease to less than 160 TgCO yr−1 in 2008–2010.

Temporal changes in the emissions of CH4 and CO from China estimated from CH4 / CO2 and CO / CO2 correlations observed at Hateruma Island

Minejima, C., Kubo, M., Tohjima, Y., Yamagishi, H., Koyama, Y., Maksyutov, S., Kita, K., and Mukai, H.: Analysis of ΔO2/ΔCO2 ratios for the pollution events observed at Hateruma Island, Japan, Atmos. Chem. Phys., 12, 2713–2723, <a href=>doi:10.5194/acp-12-2713-2012, 2012.; Mukai, H., Katsumoto, M., Ide, R., Machida, T., Fujinuma, Y., Nojiri, Y., Inagaki, M., Oda, N., and Watai. T.: Characterization of atmospheric CO2 observed at two-background air monitoring stations (Hateruma and Ochi-ishi) in Japan. Paper presented at: Sixth International Carbon Dioxide Conference; October 2001; Sendai, Japan, 2001.; Nakatsuka, Y. and Maksyutov, S.: Optimization of the seasonal cycles of simulated CO2 flux by fitting simulated atmospheric CO2 to observed vertical profiles, Biogeosciences, 6, 2733–2741, <a href=>doi:10.5194/bg-6-2733-2009, 2009.; Nakazawa, T., Machida, T., Tanaka, M., Fujii, Y., Aoki, S., and Watanabe, O.: Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era, Geophys. Res. Lett., 20, 943–946, 1993.; Oda, T. and Maksyutov, S.: A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11, 543–556, <a href=>doi:10.5194/acp-11-543-2011, 2011.; Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, <a href=>doi:10.5194/acp-7-4419-2007, 2007.; Palmer, P. I., Jacob, D. J., Jones, D. B. A., Heald, C. L., Yantosca, R. M., Logan, J. A., Sachse, G. W., and Streets, D. G.: Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific, J. Geophys. Res., 108, 8828, <a href=>doi:10.1029/2003JD003397, 2003.; Patra, P. K., Takigawa, M., Ishijima, K., Choi, B.-C., Cunnold, D., Dlugokencky, E. J., Fraser, P., Gomez-Pelaez, A. J., Goo, T.-Y., Kim, J.-S., Krummel, P., Langenfelds, R., Meinhardt, F., Mukai, H., O'Doherty, S., Prinn, R. G., Simmonds, P., Steele, P., Tohjima. Y., Tsuboi, K., Uhse, K., Weiss, R., Worthy, D., and Nakazawa, T.: Growth rate, seasonal, synoptic, diurnal variations and budget in lower atmospheric methane, J. Meteorol. Soc. Jpn., 87, 635–663, <a href=>doi:10.2151/jmsj.87.635, 2009.; Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.: TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813–12837, <a href=>doi:10.5194/acp-11-12813-2011, 2011.; Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L., Huang, J., Cunnold, D. M., Steele, L. P., Krummel, P. B., Weiss, R. F., O'Doherty, S., Salameh, P. K., Wang, H. J., Harth, C. M., Mühle, J., and Porter, L., W.: Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805, <a href=>doi:10.1029/2008GL036037<


Click To View

Additional Books

  • Biomass Burning Contribution to Beijing ... (by )
  • Twelve Years of Global Observation of Fo... (by )
  • Local Anthropogenic Impact on Particulat... (by )
  • Tradeoffs in Climate Effects Through Air... (by )
  • Aerosol Size Distribution and New Partic... (by )
  • Wrf-chem Simulations of a Typical Pre-mo... (by )
  • Applicability of Condensation Particle C... (by )
  • Hindcast Experiments of Tropospheric Com... (by )
  • Effects of Uncertainties in the Thermody... (by )
  • Analysis of Atmospheric Neutral and Char... (by )
  • A New Formulation of Equivalent Effectiv... (by )
  • Quantification of the Carbonaceous Matte... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.