World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Aerosol Hygroscopicity Derived from Size-segregated Chemical Composition and Its Parameterization in the North China Plain : Volume 14, Issue 5 (12/03/2014)

By Liu, H. J.

Click here to view

Book Id: WPLBN0003993689
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Aerosol Hygroscopicity Derived from Size-segregated Chemical Composition and Its Parameterization in the North China Plain : Volume 14, Issue 5 (12/03/2014)  
Author: Liu, H. J.
Volume: Vol. 14, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany

Citation

APA MLA Chicago

Spindler, G., Herrmann, H., Wiedensohler, A., Liu, H. J., Müller, K., Nekat, B.,...Ma, N. (2014). Aerosol Hygroscopicity Derived from Size-segregated Chemical Composition and Its Parameterization in the North China Plain : Volume 14, Issue 5 (12/03/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China. Hygroscopic growth of aerosol particles is of significant importance in quantifying the aerosol radiative effect in the atmosphere. In this study, hygroscopic properties of ambient particles are investigated based on particle chemical composition at a suburban site in the North China Plain during the HaChi campaign (Haze in China) in summer 2009. The size-segregated aerosol particulate mass concentration as well as the particle components such as inorganic ions, organic carbon and water-soluble organic carbon (WSOC) are identified from aerosol particle samples collected with a ten-stage impactor. An iterative algorithm is developed to evaluate the hygroscopicity parameter κ from the measured chemical composition of particles. During the HaChi summer campaign, almost half of the mass concentration of particles between 150 nm and 1 μm is contributed by inorganic species. Organic matter (OM) is abundant in ultrafine particles, and 77% of the particulate mass with diameter (Dp) of around 30 nm is composed of OM. A large fraction of coarse particle mass is undetermined and is assumed to be insoluble mineral dust and liquid water. The campaign's average size distribution of κ values shows three distinct modes: a less hygroscopic mode (Dp < 150 nm) with κ slightly above 0.2, a highly hygroscopic mode (150 nm < Dp < 1 μm) with κ greater than 0.3 and a nearly hydrophobic mode (Dp > 1 μm) with κ of about 0.1. The peak of the κ curve appears around 450 nm with a maximum value of 0.35. The derived κ values are consistent with results measured with a high humidity tandem differential mobility analyzer within the size range of 50–250 nm. Inorganics are the predominant species contributing to particle hygroscopicity, especially for particles between 150 nm and 1 μm. For example, NH4NO3, H2SO4, NH4HSO4 and (NH4)2SO4 account for nearly 90% of κ for particles of around 900 nm. For ultrafine particles, WSOC plays a critical role in particle hygroscopicity due to the predominant mass fraction of OM in ultrafine particles. WSOC for particles of around 30 nm contribute 52% of κ. Aerosol hygroscopicity is related to synoptic transport patterns. When southerly wind dominates, particles are more hygroscopic; when northerly wind dominates, particles are less hygroscopic. Aerosol hygroscopicity also has a diurnal variation, which can be explained by the diurnal evolution of planetary boundary layer, photochemical aging processes during daytime and enhanced black carbon emission at night. κ is highly correlated with mass fractions of SO42−, NO3 and NH4+ for all sampled particles as well as with the mass fraction of WSOC for particles of less than 100 nm. A parameterization scheme for κ is developed using mass fractions of SO42−, NO3, NH4+ and WSOC due to their high correlations with κ, and κ calculated from the parameterization agrees well with κ derived from the particle's chemical composition. Further analysis shows that the parameterization scheme is applicable to other aerosol studies in China.

Summary
Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain

Excerpt
Achtert, P., Birmili, W., Nowak, A., Wehner, B., Wiedensohler, A., Takegawa, N., Kondo, Y., Miyazaki, Y., Hu, M., and Zhu, T.: Hygroscopic growth of tropospheric particle number size distributions over the North China Plain, J. Geophys. Res.-Atmos., 114, D00G07, doi:10.1029/2008JD010921, 2009.; Asa-Awuku, A., Nenes, A., Gao, S., Flagan, R. C., and Seinfeld, J. H.: Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity, Atmos. Chem. Phys., 10, 1585–1597, doi:10.5194/acp-10-1585-2010, 2010.; Asa-Awuku, A., Moore, R. H., Nenes, A., Bahreini, R., Holloway, J. S., Brock, C. A., Middlebrook, A. M., Ryerson, T. B., Jimenez, J. L., DeCarlo, P. F., Hecobian, A., Weber, R. J., Stickel, R., Tanner, D. J., and Huey, L. G.: Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study, J. Geophys. Res.-Atmos., 116, D11201, doi:10.1029/2010JD014874, 2011.; Chang, M. C., Sioutas, C., Kim, S., Gong, H., and Linn, W. S.: Reduction of nitrate losses from filter and impactor samplers by means of concentration enrichment, Atmos. Environ., 34, 85–98, 2000.; Chen, J., Zhao, C. S., Ma, N., Liu, P. F., Göbel, T., Hallbauer, E., Deng, Z. Z., Ran, L., Xu, W. Y., Liang, Z., Liu, H. J., Yan, P., Zhou, X. J., and Wiedensohler, A.: A parameterization of low visibilities for hazy days in the North China Plain, Atmos. Chem. Phys., 12, 4935–4950, doi:10.5194/acp-12-4935-2012, 2012.; Cheng, Y. F., Zhang, Y. H., Hu, M., and Wiedensohler, A.: Observation-based method for investigating the atmospheric aerosol radiative properties in pearl river delta of China, Science Press, Beijing, 2008.; Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H+-NH4+-Na+-SO42--NB3--Cl--H2O at 298.15 K, J. Phys. Chem. A, 102, 2155–2171, 1998.; Dusek, U., Frank, G. P., Curtius, J., Drewnick, F., Schneider, J., Kuerten, A., Rose, D., Andreae, M. O., Borrmann, S., and Poeschl, U.: Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events, Geophys. Res. Lett., 37, L03804, doi:10.1029/2009GL040930, 2010.; Eichler, H., Cheng, Y. F., Birmili, W., Nowak, A., Wiedensohler, A., Brueggemann, E., Gnauk, T., Herrmann, H., Althausen, D., Ansmann, A., Engelmann, R., Tesche, M., Wendisch, M., Zhang, Y. H., Hu, M., Liu, S., and Zeng, L. M.: Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China, Atmos. Environ., 42, 6321–6334, 2008.; Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3--Cl--H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, doi:10.5194/acp-7-4639-2007, 2007.; Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys

 

Click To View

Additional Books


  • Surface Pressure Retrieval from Sciamach... (by )
  • Potential Climatic Impacts and Reliabili... (by )
  • A Lagrangian Analysis of the Impact of T... (by )
  • A Parameterisation of the Soot Aging for... (by )
  • Air Quality Simulations of Wildfires in ... (by )
  • Technical Note: a New Day- and Night-tim... (by )
  • Impacts of Mechanistic Changes on HoX Fo... (by )
  • The Contribution of Extratropical Cyclon... (by )
  • Constraining Terrestrial Ecosystem Co2 F... (by )
  • Simultaneous Measurements of Oclo, No2 a... (by )
  • Evidence and Quantitation of Aromatic Or... (by )
  • Laboratory Studies of H2So4/H2O Binary H... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.