World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States : Volume 14, Issue 14 (16/07/2014)

By Mao, Y. H.

Click here to view

Book Id: WPLBN0003993993
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States : Volume 14, Issue 14 (16/07/2014)  
Author: Mao, Y. H.
Volume: Vol. 14, Issue 14
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Liou, K., Li, Q. B., Chen, D., Zhang, L., Mao, Y. H., & Hao, W. (2014). Top-down Estimates of Biomass Burning Emissions of Black Carbon in the Western United States : Volume 14, Issue 14 (16/07/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA. We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May–October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve the spatiotemporal distributions of the biomass burning BC emissions from the Global Fire Emissions Database (GFEDv2). The adjustment primarily shifts emissions from late to middle and early summer (a 33% decrease in September–October and a 56% increase in June–August) and leads to appreciable increases in modeled surface BC concentrations in early and middle summer, especially at the 1–2 and 2–3 km altitude ranges. We then conduct analytical inversions at both 2° × 2.5° and 0.5° × 0.667° (nested over North America) horizontal resolutions. The a posteriori biomass burning BC emissions for July–September are 31.7 Gg at 2° × 2.5° (an increase by a factor of 4.7) and 19.2 Gg at 0.5° × 0.667° (an increase by a factor of 2.8). The inversion results are rather sensitive to model resolution. The a posteriori biomass burning emissions at the two model resolutions differ by a factor of ~6 in California and the Southwest and by a factor of 2 in the Pacific Northwest. The corresponding a posteriori anthropogenic BC emissions are 9.1 Gg at 2° × 2.5° (a decrease of 48%) and 11.2 Gg at 0.5° × 0.667° (a decrease of 36%). Simulated surface BC concentrations with the a posteriori emissions capture the observed major fire episodes at most sites and the substantial enhancements at the 1–2 and 2–3 km altitude ranges. The a posteriori emissions also lead to large bias reductions (by ~30% on average at both model resolutions) in modeled surface BC concentrations and significantly better agreement with observations (increases in Taylor skill scores of 95% at 2° × 2.5° and 42 % at 0.5° × 0.667°).

Summary
Top-down estimates of biomass burning emissions of black carbon in the Western United States

Excerpt
Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional ranon 222 calculations using assimilated metrological data and a convective mixing algorithm, J. Geophys. Res., 101, 6871–6881, 1996a.; Allen, D. J., Kasibhatla, P., Thompson, A. M., Rood, R. B., Doddridge, B. G., Pickering, K. E., Hudson, R. D., and Lin, S.-J.: Transport-induced interannual variability of carbon monoxide determined using a chemistry and transport model, J. Geophys. Res., 101, 28655–28669, 1996b.; Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.; Anenberg, S. C., Talgo, K., Arunachalam, S., Dolwick, P., Jang, C., and West, J. J.: Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality, Atmos. Chem. Phys., 11, 7253–7267, doi:10.5194/acp-11-7253-2011, 2011.; Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Janssens-Maenhout, G., Pozzoli, L., Van Dingenen, R., Vignati, E., Emberson, L., Muller, N. Z., West, J. J., Williams, M., Demkine, V., Hicks, W. K., Kuylenstierna, J., Raes, F., and Ramanathan, V.: Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls, Environ. Health Persp., 120, 831–839, 2012.; Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I, J. Atmos. Sci., 31, 674–701, 1974.; Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., and Randerson, J. T.: Top-down estimates of global CO sources using MOPITT Measurements, Geophys. Res. Lett., 31, L01104, doi:10.1029/2003GL018609, 2004.; Arellano, A. F., Kasibhatla, P. S., Giglio, L., van der Werf, G. R., Randerson, J. T., and Collatz, G. J.: Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements, J. Geophys. Res., 111, D09303, doi:10.1029/2005JD006613, 2006.; Bergamaschi, P., Hein, R., Heimann, M., and Crutzen P. J.: Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 1909–1927, 2000.; Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific transport of mineral dust in the United States, Atmos. Environ., 41, 1251–1266, 2007.; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H.-Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23095, 2001.; Bond, T. and Sun, H.: Can Reducing Black Carbon Emissions Counteract Global Warming? Environ. Sci. Technol., 39, 5921–5926, 2005.; Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, doi:10.1029/2006GB002840, 2007.; Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., 118, 5380–5552, doi:10.1002/jgrd.50171, 2013.

 

Click To View

Additional Books


  • Establishing the Contribution of Lawn Mo... (by )
  • Cloud Condensation Nuclei (Ccn) Activity... (by )
  • Aerosol Hygroscopicity in the Marine Atm... (by )
  • What is the Limit of Climate Engineering... (by )
  • Characterization of Long-range Transport... (by )
  • Source Characteristics of Volatile Organ... (by )
  • Length and Time Scales of Atmospheric Mo... (by )
  • Time-lagged Ensemble Simulations of the ... (by )
  • Source Apportionment of the Particulate ... (by )
  • Semicontinuous Measurements of Gas–parti... (by )
  • Chemical Composition and Mass Size Distr... (by )
  • Parcel Model Simulations of Aerosol – Wa... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.