World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Greenhouse Gas Network Design Using Backward Lagrangian Particle Dispersion Modelling − Part 1: Methodology and Australian Test Case : Volume 14, Issue 17 (10/09/2014)

By Ziehn, T.

Click here to view

Book Id: WPLBN0003994136
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Greenhouse Gas Network Design Using Backward Lagrangian Particle Dispersion Modelling − Part 1: Methodology and Australian Test Case : Volume 14, Issue 17 (10/09/2014)  
Author: Ziehn, T.
Volume: Vol. 14, Issue 17
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Rayner, P. J., Fraser, P., Nickless, A., Law, R. M., Ziehn, T., & Roff, G. (2014). Greenhouse Gas Network Design Using Backward Lagrangian Particle Dispersion Modelling − Part 1: Methodology and Australian Test Case : Volume 14, Issue 17 (10/09/2014). Retrieved from

Description: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC 3195, Australia. This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.

Greenhouse gas network design using backward Lagrangian particle dispersion modelling − Part 1: Methodology and Australian test case

Asefi-Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., Elvidge, C., and Baugh, K.: A new global gridded dataset of CO2 emissions from fossil fuel combustion: methodology, evaluation and analysis, J. Geophys. Res., in review, 2014.; Bureau of Meteorology National Radar Loop: Weather Watch Radars, available at: (last access: 17 March 2014), 2014.; Chevallier, F.: Impact of correlated observation errors on inverted CO2 surface fluxes from OCO measurements, Geophys. Res. Lett., 34, L24804,doi:10.1029/2007GL030463, 2007.; Chevallier, F., Ciais, P., Conway, T. J., Aalto, T., Anderson, B. E., Bousquet, P., Brunke, E. G., Ciattaglia, L., Esaki, Y., Fröhlich, M., Gomez, A., Gomez-Pelaez, A. J., Haszpra, L., Krummel, P. B., Langenfelds, R. L., Leuenberger, M., Machida, T., Maignan, F., Matsueda, H., Morgui, J. A., Mukai, H., Nakazawa, T., Peylin, P., Ramonet, M., Rivier, L., Sawa, Y., Schmidt, M., Steele, L. P., Vay, S. A., Vermeulen, A. T., Wofsy, S., and Worthy, D.: CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements, J. Geophys. Res., 115, D21307, doi:10.1029/2010JD013887, 2010.; Chevallier, F., Deutscher, N. M., Conway, T. J., Ciais, P., Ciattaglia, L., Dohe, S., Fröhlich, M., Gomez-Pelaez, A. J., Griffith, D., Hase, F., Haszpra, L., Krummel, P., Kyrö, E., Labuschagne, C., Langenfelds, R., Machida, T., Maignan, F., Matsueda, H., Morino, I., Notholt, J., Ramonet, M., Sawa, Y., Schmidt, M., Sherlock, V., Steele, P., Strong, K., Sussmann, R., Wennberg, P., Wofsy, S., Worthy, D., Wunch, D., and Zimnoch, M.: Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column, Geophys. Res. Lett., 38, L24810, doi:10.1029/2011GL049899, 2011.; Enting, I. G.: Inverse Problems in Atmospheric Constituent Transport, Cambridge Univ. Press, New York, 2002.; Enting, I. G., and Mansbridge, J. V.: Seasonal sources and sinks of atmospheric CO2: direct inversion of filtered data, Tellus B, 41, 111–126, 1989.; Francey, R. J., Trudinger, C. M., van der Schoot, M., Law, R. M., Krummel, P. B., Langenfelds, R. L., Steele, P. L., Allison, C. E., Stavert, A. R., Andres, R. J., and Rodenbeck, C.: Atmospheric verification of anthropogenic CO2 emission trends, Nature Clim. Change, 3, 520–524, 2013.; GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – Carbon Dioxide [CD-ROM], NOAA, Boulder, CO, 2008.; Hardt, M. and Scherbaum, F.: The design of optimum networks for aftershock recordings, Geophys. J. Int, 117, 716–726, 1994.; Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., Roxburgh, S. H., van Gorsel, E., Viscarra Rossel, R. A., and Wang, Z.: Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water cycles, Biogeosciences, 10, 2011–2040, doi:10.5194/bg-10-2011-2013, 2013.; Kaminski, T., Heimann, M., and Giering, R.: A coarse grid three dimensional global inverse model of the atmospheric transport, 2. Inversion of the transport of CO2 in the 1980s, J. Geophys. Res., 104, 18555–18581, 1999.; Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A., Guenther, P. R., and Waterman, L. S.: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii, Tellus, 28, 538–551, 1976.; Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews, A. E., Sweeney, C., Dia


Click To View

Additional Books

  • Discriminating Raining from Non-raining ... (by )
  • Vertical Profiles of Nitrous Acid in the... (by )
  • Airborne Verification of Calipso Product... (by )
  • Validation of Stratospheric Water Vapour... (by )
  • Trends in Concentrations of Atmospheric ... (by )
  • Ozone Zonal Asymmetry and Planetary Wave... (by )
  • Chemistry, Transport and Dry Deposition ... (by )
  • Radiative and Dynamical Contributions to... (by )
  • Dynamical Analysis of Sea-breeze Hodogra... (by )
  • The Cloud Condensation Nuclei (Ccn) Prop... (by )
  • Uncertainty Assessment of Current Size-r... (by )
  • The Effect of Harmonized Emissions on Ae... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.