World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Mesoscale Temperature Fluctuations in the Stratosphere : Volume 6, Issue 12 (12/10/2006)

By Gary, B. L.

Click here to view

Book Id: WPLBN0003994596
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Mesoscale Temperature Fluctuations in the Stratosphere : Volume 6, Issue 12 (12/10/2006)  
Author: Gary, B. L.
Volume: Vol. 6, Issue 12
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2006
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Gary, B. L. (2006). Mesoscale Temperature Fluctuations in the Stratosphere : Volume 6, Issue 12 (12/10/2006). Retrieved from http://www.ebooklibrary.org/


Description
Description: Jet Propulsion Laboratory, Pasadena, CA 91109, 5320 E. Calle Manzana, Hereford, AZ 85615, USA. An airborne instrument that measures altitude temperature profiles is ideally suited for the task of characterizing statistical properties of the vertical displacement of isentrope surfaces. Prior measurements of temperature fluctuations during level flight could not be used to infer isentrope altitude variations because lapse rate information was missing. The Microwave Temperature Profiler instrument, which includes lapse rate measurements at flight level as a part of temperature profiles, has been used on hundreds of flights to produce altitude versus ground track cross-sections of potential temperature. These cross-sections show isentrope altitude variations with a horizontal resolution of ~3 km for a >6 km altitude region. An airborne isentrope-altitude cross-section (IAC) can be compared with a counterpart IAC generated from synoptic scale data, based on radiosondes and satellite instruments, in order to assess differences between the altitudes of isentrope surfaces sampled at mesoscale versus synoptic scale. It has been found that the synoptic scale isentropes fail to capture a significant component of vertical displacement of isentrope surfaces, especially in the vicinity of jet streams. Under the assumptions that air parcels flow along isentrope surfaces, and change temperature adiabatically while undergoing altitude displacements, it is possible to compute mesoscale temperature fluctuations that are not present in synoptic scale back trajectory parcel temperature histories. It has been found that the magnitude of the mesoscale component of temperature fluctuations varies with altitude, season, latitude and underlying topography. A model for these dependences is presented, which shows, for example, that mesoscale temperature fluctuations increase with altitude in a systematic way, are greatest over mountainous terrain, and are greater at polar latitudes during winter.

Summary
Mesoscale temperature fluctuations in the stratosphere

Excerpt
Lovejoy, S., Schertzer, D., and Tuck, A.: Fractal aircraft trajectories and nonclassical turbulent exponents, Phys. Rev. E, 70, 036306, 2004.; Bacmeister, J. T. and Gary, B. L.: Small-Scale Waves Encountered During AASE, Geophys. Res. Lett., 17, 349–352, 1990.; Browell, E. V.: Differential Absorption Lidar Sensing of Ozone, Proc. IEEE, 77, 419–432, 1989.; Bacmeister, J. T.: Mountain-Wave Drag in the Stratosphere and Mesosphere Inferred from Observed Winds and a Simple Mountain Wave Parameterization Scheme, J. Atmos. Sci., 50, 377–399, 1993.; Carlsaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Doernbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., Reimer, E., and Peter, T.: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves, Nature, 391(6668), 675–678, doi:10.1038/35589, 1998.; Denning, R. F., Guidero, S. L., Parks, G. S., and Gary, B. L.: Instrument Description of the Airborne Microwave Temperature Profiler, J. Geophys. Res., 94, 16 757–16 765, 1989.; Doernbrack, A., Birner, T., Fix, A., Flentje, H., Meister, A., Schmid, H., Browell, E., and Mahoney, M. J.: Evidence for Inertia-Gravity Waves Forming Polar Stratospheric Clouds Over Scandinavia, J. Geophys. Res., 107(D20), 8287, doi:10.1029/2001JD000452, 2002.; Farman, J. C., Gardner, B. G., and Shanklin, J. D.: Large Losses of Total Ozone in Antarctica Reveal Seasonal ClOx/Nox Interaction, Nature, 315, 207–210, 1985.; Fueglistaler, S., Buss, S., Luo, B. P., Wernli, H., Flentje, H., Hostettler, C. A., Poole, L. R., Carslaw, K. S., and Peter, T.: Detailed Modeling of Mountain Wave PSCs, Atmos. Chem. Phys., 3, 697–712, 2003.; Gage, K. S. and Nastrom, G. D.: Spectrum of Atmospheric Vertical Displacements and Spectrum of Conservative Scalar Passive Additives Due to Quasi-Horizontal Atmospheric Motions, J. Geophys. Res., 92, 13 211–13 216, 1986.; Gao, R. S., Richard, E. C., Popp, P. J., et al.: Observational Evidence for the Role of Denitrification in Arctic Stratospheric Ozone Loss, Geophys. Rev. Lett., 28, 2879–2882, 2001.; Gary, B. L.: Observational Results Using the Microwave Temperature Profiler During the Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11 223–11 231, 1989.; Hoyle, C. R., Luo, B. P., and Peter, T.: The Origin of High Ice Crystal Number Densities in Cirrus Clouds, J. Atmos. Sci., 62, 2568–2579, 2005.; Karcher, B. and Strom, J.: The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823–838, 2003.; Mandelbrot, B. B.: Fractals and 1/f Noise, Berlin, Springer, 1998.; Murphy, D. M.: Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice, Geophys. Res. Lett., 30, 2230, doi:10.1029/2003GL018566, 2003.; Mahoney, M. J. and Gary, B.: DC-8 MTP Calibration for SOLVE-2, SOLVE-2/Vintersol Science Team Meeting, Orlando, FL, 21–24 October 2003.; Murphy, D. M. and Gary, B. L.: Mesoscale Temperature Fluctuations and Polar Stratospheric Clouds, J. Atmos. Sci., 52, 1753–1760, 1995.; Nastrom, G. D. and Gage, K. S.: A Climatology of Atmospheric Wave Number Spectra Observed by Commercial Aircraft, J. Atmos. Sci., 42, 950–960, 1985.; Schoeberl, M., Newman, P., and Lait, L.: Goddard Space Flight Center Code 916, XS mission exchange files, 1991 and 1994.; Scott, S. G., Bui, T. P., Chan, K. R., and Bowen, S. W.: The Meteorological Measurement System on the NASA ER-2 Aircraft, J. Atmos. Oceanic Technol., 7, 525–540, 1990.; Tabazadeh, A., Toon, O. B., Gary, B. L., Bacmeister, J. T., and Schoeberl, M. R.: Observational Constraints on the Formation of Type Ia Polar Stratospheric Clouds, Geophys. Res. Lett., 23, 2109–2112, 1996.; Tuck, A. F., Hovde, S. J., and Bui, T. P.: Scale invariance in jet streams: ER-2 data around the lower-stratosphere polar night vortex, Quart. J. Meteorol. Soc., 130, 24

 

Click To View

Additional Books


  • Factors Controlling Temporal Variability... (by )
  • Spatial Features of Rain Frequency Chang... (by )
  • Atmospheric Boundary Layer Top Height in... (by )
  • The Vertical Structure of Cloud Radiativ... (by )
  • Validation of Omi Total Ozone Retrievals... (by )
  • Impact of Nitrous Acid Chemistry on Air ... (by )
  • Real Time Chemical Characterization of L... (by )
  • Modelling the Impacts of Climate Change ... (by )
  • Effects of Relative Humidity on Aerosol ... (by )
  • On the Presence of Equatorial Waves in t... (by )
  • The Chemistry of Daytime Sprite Streamer... (by )
  • Smoke Aerosol Properties and Ageing Effe... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.