World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Chemistry-transport Model Simulation of Middle Atmospheric Ozone from 1980 to 2019 Using Coupled Chemistry Gcm Winds and Temperatures : Volume 7, Issue 9 (02/05/2007)

By Damski, J.

Click here to view

Book Id: WPLBN0003994777
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: A Chemistry-transport Model Simulation of Middle Atmospheric Ozone from 1980 to 2019 Using Coupled Chemistry Gcm Winds and Temperatures : Volume 7, Issue 9 (02/05/2007)  
Author: Damski, J.
Volume: Vol. 7, Issue 9
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2007
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Damski, J., Taalas, P., Butchart, N., Kulmala, M., Thölix, L., Austin, J.,...Kaurola, J. (2007). A Chemistry-transport Model Simulation of Middle Atmospheric Ozone from 1980 to 2019 Using Coupled Chemistry Gcm Winds and Temperatures : Volume 7, Issue 9 (02/05/2007). Retrieved from http://www.ebooklibrary.org/


Description
Description: Research and Development, Finnish Meteorological Institute, P.O.Box 503, FI-00101 Helsinki, Finland. A global 40-year simulation from 1980 to 2019 was performed with the FinROSE chemistry-transport model based on the use of coupled chemistry GCM-data. The main focus of our analysis is on climatological-scale processes in high latitudes. The resulting trend estimates for the past period (1980–1999) agree well with observation-based trend estimates. The results for the future period (2000–2019) suggest that the extent of seasonal ozone depletion over both northern and southern high-latitudes has likely reached its maximum. Furthermore, while climate change is expected to cool the stratosphere, this cooling is unlikely to accelerate significantly high latitude ozone depletion. However, the recovery of seasonal high latitude ozone losses will not take place during the next 15 years.

Summary
A chemistry-transport model simulation of middle atmospheric ozone from 1980 to 2019 using coupled chemistry GCM winds and temperatures

Excerpt
Austin, J.: A Three-Dimensional Coupled Chemistry-Climate Model Simulation of Past Stratospheric Trends, J. Atmos. Sci., 59, 2, 218–232, 2002.; Austin, J. and Butchart N.: Coupled chemistry-climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery, Q. J. Roy. Meteorol. Soc., 129, 3225–3249, 2003.; Austin, J., Butchart, N., Claud, C.,, Cagnazzo, C., Hauchecorne, A., Hampson, J., Kaurola, J., Damski, J., Thölix, L., Langematz, U., Mieth, P., Nissen, K., Grenfell, L., Lahoz, W., Hare, S., and Canziani, P.: EuroSPICE: The European Project on Stratospheric Processes and their Influence on Climate and the Environment – Description and brief Highlights, in: SPARC Newsletter No 21, July 2003, pp 15–19, 2003.; Austin, J., Shindell, D., Bruhl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, 2003.; Austin, J. and Wilson, R.J.: Ensemble simulations of the decline and recovery of stratospheric ozone J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907, 2006.; Fioletov, V. E. and T. G. Shepherd: Summertime total ozone variations over middle and polar latitudes, Geophys. Res. Lett., 32, L04807, doi:10.1029/2004GL022080, 2005.; Brasseur, G. P., Tie, X., Rasch, P., and Lefèvre, F.: A three-dimensional model simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere, J. Geophys. Res., 102, 8909–8930, 1997.; Carslaw, K. S., Kettleborough, J. A., Northway, M. J., Davies, S., Gao, R., Fahey, D. W., Baumgardner, D. G., Chipperfield, M. P., and Kleinböhl, A.: A vortex-scale simulation of the growth and sedimentation of large nitric acid hydrate particles, J. Geophys. Res., 107(D20), 8300, doi:10.1029/2001JD000467, 2002.; Chipperfield, M. P.: Multiannual simulations with a threedimensional chemical transport model, J. Geophys. Res., 104, 1781–1805, 1999.; Chipperfield, M. P.: A three-dimensional model study of long-term mid-high latitude lower stratosphere ozone changes, Atmos. Chem. Phys., 3, 1253–1265, 2003.; Cullen, M. J. P.: The unified forecast/climate model, Meteorol. Mag., 122, 81–94, 1993.; Damski, J., Thölix, L., Backman, L., Taalas, P., and Kulmala, M.: FinROSE – Middle Atmospheric Chemistry Transport Model, Boreal Environ. Res., in press, 2007.; Dhomse, S., Weber, M., Wohltmann, I., Rex, M., and Burrows, J. P.: On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003, Atmos. Chem. Phys., 6, 1165–1180, 2006.; Egorova, T. A., Rozanov, E., Schlesinger, M., Andronova, N., Malyshev, S., Karol, I., and Zubov, V.: Assessment of the effect of the Montreal Protocol on atmospheric ozone, Geophys. Res. Lett., 28(12), 2389–2392, doi:10.1029/2000GL012523, 2001.; Eyring, V., Butchart, N., Waugh, D. W., et al.: Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006.; Fahey, D. W., Gao, R. S., Carslaw, K. S., Kettleborough, J., Popp, P. J., Northway, M. J., Holecek, J. C., Ciciora, S. C., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Baumgardner, D. G., Gandrud, B., Wennberg, P. O., Dhaniyala, S., McKinney, K., Peter, Th., Salawitch, R. J., Bui, T. P., Elkins, J. W., Webster, C. R., Atlas, E. L., Jost, H., Wilson, J. C., Herman, R. L., Kleinböhl, A., and von König, M.: The detection of large nitric-acid particles in the winter Arctic stratosphere, Science, 291, 1026–1031, 2001.; Fioletov, V. E., Bodeker, G. E., Miller, A. J., McPeters, R. D., and Stolarski, R.: Global and zonal total ozone variations estimated from ground-based a

 

Click To View

Additional Books


  • Transcom N2O Model Inter-comparison – Pa... (by )
  • Quantification of the Depletion of Ozone... (by )
  • So2 Retrieval from Sciamachy Using the W... (by )
  • Transcom Model Simulations of Ch4 and Re... (by )
  • Wintertime Peroxyacetyl Nitrate (Pan) in... (by )
  • Formation and Aging of Secondary Organic... (by )
  • Sources Contributing to Background Surfa... (by )
  • Springtime Warming and Reduced Snow Cove... (by )
  • Retrieval of Nitrogen Dioxide Stratosphe... (by )
  • Climatic Effects of 1950–2050 Changes in... (by )
  • Size Distributions of Dicarboxylic Acids... (by )
  • Measurements of Co2, Its Stable Isotopes... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.