World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Assessing Positive Matrix Factorization Model Fit: a New Method to Estimate Uncertainty and Bias in Factor Contributions at the Measurement Time Scale : Volume 9, Issue 2 (22/01/2009)

By Hemann, J. G.

Click here to view

Book Id: WPLBN0003994950
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Assessing Positive Matrix Factorization Model Fit: a New Method to Estimate Uncertainty and Bias in Factor Contributions at the Measurement Time Scale : Volume 9, Issue 2 (22/01/2009)  
Author: Hemann, J. G.
Volume: Vol. 9, Issue 2
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Miller, S. L., Dutton, S. J., Hannigan, M. P., Brinkman, G. L., Milford, J. B., & Hemann, J. G. (2009). Assessing Positive Matrix Factorization Model Fit: a New Method to Estimate Uncertainty and Bias in Factor Contributions at the Measurement Time Scale : Volume 9, Issue 2 (22/01/2009). Retrieved from

Description: Department of Applied Mathematics, University of Colorado, Boulder, USA. A Positive Matrix Factorization receptor model for aerosol pollution source apportionment was fit to a synthetic dataset simulating one year of daily measurements of ambient PM2.5 concentrations, comprised of 39 chemical species from nine pollutant sources. A novel method was developed to estimate model fit uncertainty and bias at the daily time scale, as related to factor contributions. A circular block bootstrap is used to create replicate datasets, with the same receptor model then fit to the data. Neural networks are trained to classify factors based upon chemical profiles, as opposed to correlating contribution time series, and this classification is used to align factor orderings across the model results associated with the replicate datasets. Factor contribution uncertainty is assessed from the distribution of results associated with each factor. Comparing modeled factors with input factors used to create the synthetic data assesses bias. The results indicate that variability in factor contribution estimates does not necessarily encompass model error: contribution estimates can have small associated variability across results yet also be very biased. These findings are likely dependent on characteristics of the data.

Assessing positive matrix factorization model fit: a new method to estimate uncertainty and bias in factor contributions at the measurement time scale

% vor jede Referenz Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab., 37, 23–35, 1997.; % vor jede Referenz Anderson, M. J., Daly, E. P., Miller, S. L., and Milford, J. B.: Source apportionment of exposures to volatile organic compounds: II. Application of receptor models to TEAM study data, Atmos. Environ., 36, 3643–3658, 2002.; % vor jede Referenz Brinkman, G., Vance, G., Hannigan, M. P., and Milford, J. B.: Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM$_2.5$ exposure data, Environ. Sci. Technol., 40, 1892–1901, 2006.; % vor jede Referenz Cadle, S. H., Mulawa, P., Hunsanger, E. C., Nelson, K., Ragazzi, R. A., Barrett, R., Gallagher, G. L., Lawson, D. R., Knapp, K. T., and Snow, R.: Light-duty motor vehicle exhaust particulate matter measurement in the Denver, Colorado, area, J. Air Waste Manage., 49, 164–174, 1999.; % vor jede Referenz Carlstein, E.: The use of subseries values for estimating the variance of a general statistic from a stationary sequence, Ann. Stat., 14, 1171–1179, 1986.; % vor jede Referenz Chatfield, C.: Model uncertainty, data mining and statistical inference, J. Roy. Stat. Soc. A Sta., 158, 419–466, 1995.; % vor jede Referenz Chen, L. W. A., Watson, J. G., Chow, J. C., and Magliano, K. L.: Quantifying PM$_2.5$ source contributions for the San Joaquin valley with multivariate receptor models, Environ. Sci. Technol., 41, 2818–2826, 2007.; % vor jede Referenz Chinkin, L. R., Coe, D. L., Funk, T. H., Hafner, H. R., Roberts, P. T., Ryan, P. A., and Lawson, D. R.: Weekday versus weekend activity patterns for ozone precursor emissions in California's south coast air basin, J. Air Waste Manage., 53, 829–843, 2003.; % vor jede Referenz Christensen, W. F. and Sain, S. R.: Accounting for dependence in a flexible multivariate receptor model, Technometrics, 44, 328–337, 2002.; % vor jede Referenz Dockery, D. W., Pope, C. A., Xu, X. P., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., and Speizer, F. E.: An association between air-pollution and mortality in 6 United-States cities, New Engl. J. Med., 329, 1753–1759, 1993.; % vor jede Referenz Dominici, F., McDermott, A., Daniels, M., Zeger, S. L., and Samet, J. M.: Revised analyses of the national morbidity, mortality, and air pollution study: Mortality among residents of 90 cities, J. Toxicol. Env. Heal. A, 68, 1071–1092, 2005.; % vor jede Referenz Eberly, S. I.: EPA PMF 1.1 User's Guide, U.S. Environmental Protection Agency, Research Triangle Park, NC, 2005.; % vor jede Referenz Efron, B.: 1977 Rietz lecture – bootstrap methods – another look at the jackknife, Ann. Stat., 7, 1–26, 1979.; % vor jede Referenz Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the midwestern and western United States, Environ. Eng. Sci., 21, 387–409, 2004.; % vor jede Referenz Hall, P., Horowitz, J. L., and Jing, B. Y.: On blocking rules for the bootstrap with dependent data, Biometrika, 82, 561–574, 1995.; % vor jede Referenz Lough, G. C.: Sources of metals and NMHCs from motor vehicle roadways, Doctor of Philosophy University of Wisconsin, Madison, WI, 2004.; % vor jede Referenz Hannigan, M. P.: Mutagenic particulate matter in air pollutant source emissions and in ambient air, Doctorate of Philosophy, California Institute of Technology, Pasadena, CA, 221 pp., 1997.; % vor jede Referenz Haykin, S.: Neural networks: A comprehensive foundation, Prentice Hall, 2nd Ed., Upper Saddle River, 1998.; % vor jede Referenz Heidam, N. Z.: Bootstrap estimates of factor model variability, Atmos. Environ., 21, 1203–1217, 1987.; % vor jede Referenz Huang, S. L., Rahn, K. A., and Arimoto, R.: Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island, Atmos. Environ., 33, 2169–2185, 1999.; % vor jede Referenz Kiefer, N. M. and Vogelsang, T. J.: A


Click To View

Additional Books

  • Observation of Biogenic Secondary Organi... (by )
  • To What Extent Can Aerosol Water Explain... (by )
  • Ozone Profile Retrieval from Limb Scatte... (by )
  • Chemical and Physical Characteristics of... (by )
  • Representing Time-dependent Freezing Beh... (by )
  • Online Measurements of the Emissions of ... (by )
  • A Review of Sea Spray Aerosol Source Fun... (by )
  • Low Temperature Mid-infrared Cross-secti... (by )
  • On Retrieving Refractive Index of Dust-l... (by )
  • Formaldehyde (Hcho) in Air, Snow and Int... (by )
  • Modelling Atmospheric Transport of Α-hex... (by )
  • Laboratory Study on Heterogeneous Decomp... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.