World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Role of Dust Alkalinity in Acid Mobilization of Iron : Volume 10, Issue 4 (21/04/2010)

By Ito, A.

Click here to view

Book Id: WPLBN0003995303
Format Type: PDF Article :
File Size: Pages 30
Reproduction Date: 2015

Title: Role of Dust Alkalinity in Acid Mobilization of Iron : Volume 10, Issue 4 (21/04/2010)  
Author: Ito, A.
Volume: Vol. 10, Issue 4
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Feng, Y., & Ito, A. (2010). Role of Dust Alkalinity in Acid Mobilization of Iron : Volume 10, Issue 4 (21/04/2010). Retrieved from

Description: Research Institute for Global Change, JAMSTEC, Yokohama, Kanagawa, 236-0001, Japan. Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a key role in the transformation of insoluble iron (Fe2O3) to soluble forms (e.g., Fe(II), inorganic soluble species of Fe(III), and organic complexes of iron). However, mineral dust particles also have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3). Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model, which is incorporated with a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution in aerosol solution during the long-range transport. Over the North Pacific Ocean, only a small fraction (<0.2%) of iron dissolves from hematite in the coarse-mode dust aerosols, when assuming internally mixed with carbonate minerals. However, if the iron-containing minerals are externally mixed with carbonate minerals, a significant amount (1–2%) of iron would dissolve from the acid mobilization. It implies that the alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size.

Role of dust alkalinity in acid mobilization of iron

Baker, A. R. and Croot, P. L.: Atmospheric and marine controls on aerosol iron solubility in seawater, Mar. Chem., in press, doi:10.1016/j.marchem. 2008.09.003, 2008.; Azuma, K. and Kametani, H.: Kinetics of dissolution of ferric oxide, Trans. Metall. Soc. AIME, 230, 853–862, 1964.; Andronova, A. V., Gomes, L., Smirnov, V. V., Ivanov, A. V., and Shukurova, L. M.: Physicochemical characteristics of dust aerosols deposited during the Soviet-American eperiment (Tajikistan, 1989), Atmos. Environ., Part A: General Topics, 27(16), 2487–2493, 1993.; Arimoto, R., Zhang, X. Y., Huebert, B. J., Kang, C. H., Savoie, D. L., Prospero, J. M., Sage, S. K., Schloesslin, C. A., Khaing, H. M., and Oh, S. N.: Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia, J. Geophys. Res., 109(D19), D19S04, doi:10.1029/2003JD004323, 2004.; Baker, A. R. and Jickells, T. D.: Mineral particle size as a control on aerosol iron solubility, Geophys. Res. Lett., 33, L17608, doi:10.1029/2006GL026557, 2006.; Blesa, M. A., Morando, P. J., and Regazzoni, A. E.: Chemical Dissolution of Metal Oxides, 401 pp., CRC Press, Boca Raton, Fla, 1994.; Buck, C. S., Landing, W. M., and Resing, J. A.: Particle size and aerosol iron solubility: A high-resolution analysis of Atlantic aerosols, Mar. Chem., in press, doi:10.1016/j.marchem.2008.11.002, 2008.; Burch, T. E., Nagy, K. L., and Lasaga, A. C.: Free energy dependence of albite dissolution kinetics at 80{_}C and pH 8.8, Chem. Geol., 105(1–3), 137–162, 1993.; Cama, J., Ayora, C., and Lasaga, A. C.: The deviation-from-equilibrium effect on dissolution rate and on apparent variations in activation energy, Geochim. Cosmochim. Acta, 63(17), 2481–2486, 1999.; Chen, L.-L., Carmichael, G. R., and Hong, M.-S., et al.: Influence of continental outflow events on the aerosol composition at Cheju Island, South Korea, J. Geophys. Res., 102, 28551–28574, 1997.; Chen, Y. and Siefert, R.: Determination of various types of labile atmospheric iron over remote oceans, J. Geophys. Res., 108(D24), 4774, doi:10.1029/2003JD003515, 2003.; Chou, L., Garrels, R. M., and Wollast, R.: Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol., 78, 269–282, 1989.; Chuang, P. Y., Duvall, R. M., Shafer, M. M., and Schauer, J. J.: The origin of water soluble particulate iron in the Asian atmospheric outflow, Geophys. Res. Lett., 32, L07813, doi:10.1029/2004GL021946, 2005.; Claquin, T., Schulz, M., and Balkanski, Y. J.: Modeling the mineralogy of atmospheric dust sources, J. Geophys. Res., 104, 22243–22256, 1999.; Cornell, R. M. and Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 573 pp., John Wiley, Hoboken, N. J., 1996.; Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., and Grassian, V. H.: Characterization and acid-mobilization study of iron-containing mineral dust source materials, J. Geophys. Res., 113, D05202, doi:10.1029/2007JD009332, 2008.; Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J.: Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101(D17), 22869–22889, 1996.; Duce, R. A. and Tindale, N. W.: Atmospheric transport of iron and its deposition in the ocean, Limnol. Oceanogr., 36(8), 1715–1726, 1991.; Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, 2006.; Duvall, R. M., Majestic, B. J., Shafer, M. M., Chuang, P. Y., Simoneit, B. R. T., and Schauer, J. J.: The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils, Atmos. Environ., 42, 5872–5884, 2008.


Click To View

Additional Books

  • Climatic Consequences of Regional Nuclea... (by )
  • A Statistical Proxy for Sulphuric Acid C... (by )
  • Characterization of Primary and Secondar... (by )
  • Influence of Aerosols on the Formation a... (by )
  • Short Vertical-wavelength Inertia-gravit... (by )
  • Sources, Seasonality, and Trends of Sout... (by )
  • Potential Source Regions and Processes o... (by )
  • Airborne Flux Measurements of Biogenic V... (by )
  • Bias Determination and Precision Validat... (by )
  • Characterization of Biomass Burning Smok... (by )
  • Effect of Atmospheric Organic Complexati... (by )
  • Long-term Changes and Variability in a T... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.