World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Aerosol Mass Spectrometer Constraint on the Global Secondary Organic Aerosol Budget : Volume 11, Issue 2 (16/02/2011)

By Spracklen, D. V.

Click here to view

Book Id: WPLBN0003995911
Format Type: PDF Article :
File Size: Pages 57
Reproduction Date: 2015

Title: Aerosol Mass Spectrometer Constraint on the Global Secondary Organic Aerosol Budget : Volume 11, Issue 2 (16/02/2011)  
Author: Spracklen, D. V.
Volume: Vol. 11, Issue 2
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany

Citation

APA MLA Chicago

Mann, G. W., Carslaw, K. S., Worsnop, D. R., Jimenez, J. L., Rap, A., Allan, J.,...Canagaratna, M. R. (2011). Aerosol Mass Spectrometer Constraint on the Global Secondary Organic Aerosol Budget : Volume 11, Issue 2 (16/02/2011). Retrieved from http://www.ebooklibrary.org/


Description
Description: School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. The budget of atmospheric secondary organic aerosol (SOA) is very uncertain, with recent estimates suggesting a global source of between 12 and 1820 Tg (SOA) a−1. We used a dataset of aerosol mass spectrometer (AMS) observations and a global chemical transport model including aerosol microphysics to produce top-down constraints on the SOA budget. We treated SOA formation from biogenic (monoterpenes and isoprene), lumped anthropogenic and lumped biomass burning volatile organic compounds (VOCs) and varied the SOA yield from each precursor source to produce the best overall match between model and observations. Organic aerosol observations from the IMPROVE network were used as an independent check of our optimised sources. The optimised model has a global SOA source of 140 ± 90 Tg (SOA) a−1 comprised of 13 ± 8 Tg (SOA) a−1 from biogenic, 100 ± 60 Tg (SOA) a−1 from anthropogenically controlled SOA, 23 ± 15 Tg (SOA) a−1 from conversion of primary organic aerosol (mostly from biomass burning) to SOA and an additional 3 ± 3 Tg (SOA) a−1 from biomass burning VOCs. Compared with previous estimates, our optimized model has a substantially larger SOA source in the Northern Hemisphere mid-latitudes. We used a dataset of 14C observations from rural locations to estimate that 10 Tg (SOA) a−1 (10%) of our anthropogenically controlled SOA is of urban/industrial origin, with 90 Tg (SOA) a−1 (90%) most likely due to an anthropogenic pollution enhancement of SOA from biogenic VOCs, almost an order-of-magnitude beyond what can be explained by current understanding. The urban/industrial SOA source is consistent with the 13 Tg a−1 estimated by de Gouw and Jimenez (2009), which was much larger than estimates from previous studies. The anthropogenically controlled SOA source results in a global mean aerosol direct effect of −0.26 ± 0.15 Wm−2 and global mean indirect (cloud albedo) effect of −0.6+0.24−0.14 Wm−2. The biogenic and biomass SOA sources are not well constrained due to the limited number of OA observations in regions and periods strongly impacted by these sources. To further improve the constraints by this method, additional observations are needed in the tropics and the Southern Hemisphere.

Summary
Aerosol mass spectrometer constraint on the global secondary organic aerosol budget

Excerpt
Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42(12), 4478–4485, doi:10.1021/es703009q, 2008.; Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, doi:10.5194/acp-9-6633-2009, 2009.; Allan, J. D., Bower, K. N., Coe, H., Boudries, H., Jayne, J. T., Canagaratna, M. R., Millet, D. B., Goldstein, A. H., Quinn, P. K., Weber, R. J., and Worsnop, D. R.: Submicron aerosol composition at Trinidad Head, California, during ITCT 2K2: Its relationship with gas phase volatile organic carbon and assessment of instrument performance, J. Geophys. Res., $109$(D23), D23S24, doi:10.1029/2003JD004208, 2004.; Arnold, S. R., Chipperfield, M. P., and Blitz, M. A.: A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis, J. Geophys. Res., 110, D22305, doi:10.1029/2005JD005998, 2005.; Arnold, S. R., Spracklen, D. V., Williams, J., Yassaa, N., Sciare, J., Bonsang, B., Gros, V., Peeken, I., Lewis, A. C., Alvain, S., and Moulin, C.: Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol, Atmos. Chem. Phys., 9, 1253–1262, doi:10.5194/acp-9-1253-2009, 2009.; Bench, G., Fallon, S., Schichtel, B., Malm, W., and McDade, C.: Relative contributions of fossil and contemporary carbon sources to PM 2.5 aerosols at nine Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites, J. Geophys. Res., 112, D10205, doi:10.1029/2006JD007708, 2007.; Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne mass spectrometer, Mass Spectrom. Rev., 26(2), 185–222, 2007.; Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood, J., and Coe, H.: Aging of biomass burning aerosols West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios, J. Geophys. Res., 113, D00C15, doi:10.1029/2008JD009845, 2008.; Capes, G., Murphy, J. G., Reeves, C. E., McQuaid, J. B., Hamilton, J. F., Hopkins, J. R., Crosier, J., Williams, P. I., and Coe, H.: Secondary organic aerosol from biogenic VOCs over West Africa during AMMA, Atmos. Chem. Phys., 9, 3841–3850, doi:10.5194/acp-9-3841-2009

 

Click To View

Additional Books


  • Airborne Verification of Calipso Product... (by )
  • On Realistic Size Equivalence and Shape ... (by )
  • Long Term Measurements of Submicrometer ... (by )
  • The Metastable Hcl · 6H2O Phase – Ir Spe... (by )
  • Relative Humidity-dependent Viscosities ... (by )
  • Characterization of Air Ions in Boreal F... (by )
  • Where Do Winds Come from? a New Theory o... (by )
  • Pressure Broadening in the 2Ν3 Band of M... (by )
  • Putting the Clouds Back in Aerosol-cloud... (by )
  • Change of Iron Species and Iron Solubili... (by )
  • The Ozonolysis of Primary Aliphatic Amin... (by )
  • Technical Note: Review of Methods for Li... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.