World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Monitoring High-ozone Events in the US Intermountain West Using Tempo Geostationary Satellite Observations : Volume 13, Issue 12 (23/12/2013)

By Zoogman, P.

Click here to view

Book Id: WPLBN0003996617
Format Type: PDF Article :
File Size: Pages 28
Reproduction Date: 2015

Title: Monitoring High-ozone Events in the US Intermountain West Using Tempo Geostationary Satellite Observations : Volume 13, Issue 12 (23/12/2013)  
Author: Zoogman, P.
Volume: Vol. 13, Issue 12
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Travis, K., Fiore, A., Zoogman, P., Jacob, D. J., Chance, K., Liu, X., & Lin, M. (2013). Monitoring High-ozone Events in the US Intermountain West Using Tempo Geostationary Satellite Observations : Volume 13, Issue 12 (23/12/2013). Retrieved from

Description: Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA. High-ozone events, approaching or exceeding the National Ambient Air Quality Standard (NAAQS), are frequently observed in the US Intermountain West in association with subsiding background influence. Monitoring and attribution of these events is problematic because of the sparsity of the surface network and lack of vertical information. We present an Observing System Simulation Experiment (OSSE) to evaluate the ability of the future geostationary satellite instrument Tropospheric Emissions: Monitoring of Pollution (TEMPO), scheduled for launch in 2018–2019, to monitor and attribute high-ozone events in the Intermountain West through data assimilation. TEMPO will observe ozone in the ultraviolet (UV) and visible (Vis) for sensitivity in the lower troposphere. Our OSSE uses ozone data from the GFDL AM3 chemistry-climate model (CCM) as the true atmosphere and samples it for April–June 2010 with the current surface network (CASTNet sites), TEMPO, and a low Earth orbit (LEO) IR satellite instrument. The synthetic data are then assimilated into the GEOS-Chem chemical transport model (CTM) using a Kalman filter. Error correlation length scales (500 km in horizontal, 1.7 km in vertical) extend the range of influence of observations. We show that assimilation of surface data alone does not adequately detect high-ozone events in the Intermountain West. Assimilation of TEMPO data greatly improves the monitoring capability, with little information added from the LEO instrument. The vertical information from TEMPO further enables the attribution of NAAQS exceedances to background ozone and this is illustrated with the case of a stratospheric intrusion.

Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations

Arnold, C. and Dey, C.: Observing-systems simulation experiments – past, present, and future, B. Am. Meteorol. Soc., 67, 687–695, 1986.; August, T., Klaes, D., Schluessel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, X.: IASI on metop-A: operational level 2 retrievals after five years in orbit, J. Quant. Spectrosc. Ra., 113, 1340–1371, 2012.; Bak, J., Kim, J. H., Liu, X., Chance, K., and Kim, J.: Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra, Atmos. Meas. Tech., 6, 239–249, doi:10.5194/amt-6-239-2013, 2013.; Bey, I., Jacob, D., Yantosca, R., Logan, J., Field, B., Fiore, A., Li, Q., Liu, H., Mickley, L., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, 2001.; Brodin, M., Helmig, D., and Oltmans, S.: Seasonal ozone behavior along an elevation gradient in the colorado front range mountains, Atmos. Environ., 44, 5305–5315, 2010.; Chance, K., Burrows, J., Perner, D., and Schneider, W.: Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry: a potential method to retrieve tropospheric ozone, J. Quant. Spectrosc. Ra., 57, 467–476, 1997.; Chance, K., Lui, X., Suleiman, R. M., Flittner, D. E., and Janz, S. J.: Tropspheric Emissions: Monitoring of Pollution (TEMPO), Abstract A31B-0020 presented at the 2012 AGU Fall Meeting, 2012.; Claeyman, M., Attié, J.-L., Peuch, V.-H., El Amraoui, L., Lahoz, W. A., Josse, B., Joly, M., Barré, J., Ricaud, P., Massart, S., Piacentini, A., von Clarmann, T., Höpfner, M., Orphal, J., Flaud, J.-M., and Edwards, D. P.: A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE), Atmos. Meas. Tech., 4, 1637–1661, doi:10.5194/amt-4-1637-2011, 2011.; Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, doi:10.5194/acp-9-6041-2009, 2009.; Cooper, O. R., Oltmans, S. J., Johnson, B. J., Brioude, J., Angevine, W., Trainer, M., Parrish, D. D., Ryerson, T. R., Pollack, I., Cullis, P. D., Ives, M. A., Tarasick, D. W., Al-Saadi, J., and Stajner, I.: Measurement of western US baseline ozone from the surface to the tropopause and assessment of downwind impact regions, J. Geophys. Res.-Atmos, 116, D00V03, doi:10.1029/2011JD016095, 2011.; Cooper, O. R., Gao, R., Tarasick, D., Leblanc, T., and Sweeney, C.: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010, J. Geophys. Res.-Atmos., 117, D22307, doi:10.1029/2012JD018261, 2012.; Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: a critical review, Atmos. Environ., 51, 1–10, 2012.; Edwards, D. P., Arellano Jr., A. F., and Deeter, M. N.: A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere, J. Geophys. Res.-Atmos., 114, D14304, doi:10.1029/2008JD011375, 2009.; Emery, C., Jung, J., Downey, N., Johnson, J., Jimenez, M., Yarvvood, G., and Morris, R.: Regional and global modeling estimates of policy relevant background ozone over the United States, Atmos. Environ., 47, 206–217, 2012.; Fiore, A., Jacob, D., Bey, I., Yantosca, R., Field, B., Fusco, A., a


Click To View

Additional Books

  • Seasonal Characteristics of Fine Particu... (by )
  • Effect of Biomass Burning on Marine Stra... (by )
  • Enhanced Extinction of Visible Radiation... (by )
  • Observed Spatial Variability of Boundary... (by )
  • Radical Mechanisms of Methyl Vinyl Keton... (by )
  • Development of a 10 Year (2001–2010) 0.1... (by )
  • Laboratory Investigation of Photochemica... (by )
  • Implementation of Dust Emission and Chem... (by )
  • Tropospheric Aerosol Microphysics Simula... (by )
  • The Contribution of Plume-scale Nucleati... (by )
  • Evaluating the Influences of Biomass Bur... (by )
  • Middle Atmospheric Changes Caused by the... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.