World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Contributions of Dust and Biomass-burning to Aerosols at a Colorado Mountain-top Site : Volume 15, Issue 15 (07/08/2015)

By Hallar, A. G.

Click here to view

Book Id: WPLBN0003997019
Format Type: PDF Article :
File Size: Pages 36
Reproduction Date: 2015

Title: Contributions of Dust and Biomass-burning to Aerosols at a Colorado Mountain-top Site : Volume 15, Issue 15 (07/08/2015)  
Author: Hallar, A. G.
Volume: Vol. 15, Issue 15
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Andrews, E., Ogren, J. A., Mccubbin, I. B., Hallar, A. G., Petersen, R., & Michalsky, J. (2015). Contributions of Dust and Biomass-burning to Aerosols at a Colorado Mountain-top Site : Volume 15, Issue 15 (07/08/2015). Retrieved from http://www.ebooklibrary.org/


Description
Description: Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, CO, USA. Visible Multifilter Rotating Shadowband Radiometer (MFRSR) data were collected at Storm Peak Laboratory (SPL), a mountain top facility in northwest Colorado, from 1999–2011 and in 2013. From 2011–2014, in situ measurements of aerosol light scattering were also obtained. Using these datasets together, the seasonal impact of dust and biomass burning is considered for the western United States. Analysis indicates that the median contributions to spring and summer aerosol optical depth (AOD) from dust and biomass-burning aerosols across the dataset are comparable. The mean AOD is slightly greater in the summer, with significantly more frequent and short duration high AOD measurements due to biomass-burning episodes, than in the spring. The Ångström exponent showed a significant increase in the summer for both the in situ and MFRSR data, indicating an increase in combustion aerosols. Spring dust events are less distinguishable in the in situ data than the column measurement, suggesting that a significant amount of dust may be found above the elevation of SPL, 3220 m a.s.l.

Twenty-two known case studies of intercontinental dust, regional dust, and biomass burning events were investigated. These events were found to follow a similar pattern, in both aerosol loading and Ångström exponent, as the seasonal mean signal in both the MFRSR and ground-based nephelometer. This dataset highlights the wide scale implications of a warmer, drier climate on visibility in the western United States.


Summary
Contributions of dust and biomass-burning to aerosols at a Colorado mountain-top site

Excerpt
Akimoto, H.: Global air quality and pollution, Science, 302, 1716–1718, 2003.; Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 intergrating nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998.; Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, 1996.; Aryal, R. P., Voss, K. J., Terman, P. A., Keene, W. C., Moody, J. L., Welton, E. J., and Holben, B. N.: Comparison of surface and column measurements of aerosol scattering properties over the western North Atlantic Ocean at Bermuda, Atmos. Chem. Phys., 14, 7617–7629, doi:10.5194/acp-14-7617-2014, 2014.; Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A., Weingartner, E., Baltensperger, U., Bukowiecki, N., Lihavainen, H., Kivekäs, N., Asmi, E., Aalto, P. P., Kulmala, M., Wiedensohler, A., Birmili, W., Hamed, A., O'Dowd, C., G Jennings, S., Weller, R., Flentje, H., Fjaeraa, A. M., Fiebig, M., Myhre, C. L., Hallar, A. G., Swietlicki, E., Kristensson, A., and Laj, P.: Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations, Atmos. Chem. Phys., 13, 895–916, doi:10.5194/acp-13-895-2013, 2013.; Augustine, J. A., Hodges, G. B., Dutton, E. G., Michalsky, J. J., and Cornwall, C. R.: An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD), J. Geophys. Res., 113, D11204, doi:10.1029/2007JD009504, 2008.; Belnap, J. and Gillette, D. A.: Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance, J. Arid Environ., 39, 133–142, 1998.; Bigelow, D. S., Slusser, J. R., Beaubien, A. F., and Gibson, J. H.: The USDA ultraviolet radiation monitoring program, B. Am. Meteorol, Soc., 79, 601–615, 1998.; Bodhaine, B. A.: Aerosol measurements during the Mauna Loa Photochemistry Experiment 2, J. Geophys. Res., 101, 14757–14766, 1996.; Borys, R. D. and Wetzel, M. A.: Storm Peak Laboratory: a research, teaching and service facility for the atmospheric sciences, B. Am. Meteorol. Soc., 78, 2115–2123, 1997.; Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.; Clarke, A. and Kapustin, V.: Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei, Science, 329, 1488–1492, 2010.; Clarke, A., McNaughton, C., Kapustin, V., Shinozuka, Y., Howell, S., Dibb, J., Zhou, J., Anderson, B., Brekhovskikh, V., Turner, H., and Pinkerton, M.: Biomass burning and pollution aerosol over North America: organic components and their influence on spectral optical properties and humidification response, J. Geophys. Res., 112, D12S18, doi:10.1029/2006JD007777, 2007.; Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W: Long-term aridity changes in the western United States, Science, 306, 1015–1018, 2004.; Collaud Coen, M., Andrews, E.

 

Click To View

Additional Books


  • Combustion Particulate Emissions in Afri... (by )
  • Ammonia in Positively Charged Pre-nuclea... (by )
  • Dependence of Cloud Fraction and Cloud T... (by )
  • Heterogeneous Reaction of N2O5 with Illi... (by )
  • The Oleic Acid-ozone Heterogeneous React... (by )
  • Size-resolved Aerosol Composition and Li... (by )
  • Conceptual Study on Nucleation Burst Evo... (by )
  • Hemispheric Ozone Variability Indices De... (by )
  • Exceptional Emissions of NH3 and Hcooh i... (by )
  • Odin/Osiris Observations of Stratospheri... (by )
  • Kinetics of the Gas-phase Reactions of O... (by )
  • Simulating Aerosol Microphysics with the... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.