World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Clear Sky Uv Simulations in the 21St Century Based on Ozone and Temperature Projections from Chemistry-climate Models : Volume 8, Issue 4 (09/07/2008)

By Tourpali, K.

Click here to view

Book Id: WPLBN0003998182
Format Type: PDF Article :
File Size: Pages 20
Reproduction Date: 2015

Title: Clear Sky Uv Simulations in the 21St Century Based on Ozone and Temperature Projections from Chemistry-climate Models : Volume 8, Issue 4 (09/07/2008)  
Author: Tourpali, K.
Volume: Vol. 8, Issue 4
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Description: Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece. We have used total ozone columns and vertical profiles of ozone and temperature from 11 coupled Chemistry-Climate Models (CCMs) to project future solar ultraviolet radiation levels at the surface in the 21st century. The CCM simulations are used as input to a radiative transfer model for the simulation of the corresponding future UV irradiance levels under cloud free conditions, presented here as time series of monthly erythemal irradiance received at the surface during local noon covering the period 1960 to 2100. Starting from the first decade of the 21st century, the surface erythemal irradiance decreases globally as a result of the projected ozone recovery, at rates which are larger in the first half of the 21st century, compared to the period up to 2100. The magnitude of these decreases varies with latitude and is more pronounced at areas where ozone has been depleted most considerably after 1980. Over midlatitudes surface erythemal irradiance decreases between 5 and 15% by 2100 relative to 2000, while at the southern high latitudes these changes are twice as much. Climate change may affect future cloudiness, surface reflectivity and tropospheric aerosol loading, the effects of which are not included in this study. Therefore, the actual changes in future UV radiation are likely to change accordingly in the areas affected.

Clear sky UV simulations in the 21st century based on ozone and temperature projections from Chemistry-Climate Models

Akiyoshi, H., Sugita, T., Kanzawa, H., and Kawamoto, N.: Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOX chemistry and planetary scale wave activity, J. Geophys. Res., 109, D03304, doi:10.1029/2003JD003632, 2004.; Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907, 2006.; Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, Mass., Air Force Geophys. Lab., Hascom Air Force Base, 1986.; Austin, J., Wilson, R. J., Li, F., and Vömel, H.: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations, J. Atmos. Sci., 17 905–17 921, 2006.; Bais, A. F., Lubin, D., Arola, A., Bernhard, G., Blumthaler, M., Chubarova, N., Erlick, C., Gies, H. P., Krotkov, N., Lantz, K., Mayer, B., McKenzie, R. L., Piacentini, R., Seckmeyer, G., Slusser, J. R., and Zerefos, C.: Surface ultraviolet radiation: Past, present and future, Geneva, Switzerland, Chapter 7 in Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project–Report No. 47, World Meteorological Organization, 58, 2007.; Beagley, S. R., Grandpré, J. D., Koshyk, J. N., McFarlane, N. A., and Shepherd, T. G.: Radiative- dynamical climatology of the first-generation Canadian Middle Atmosphere Model, Atmos. Ocean, 35, 293–331, 1997.; Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972, 2008.; Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., Brühl, C., and Giorgetta, M.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcings, Atmos. Chem. Phys., 5, 2121–2145, 2005.; Dameris, M., Matthes, S., Deckert, R., Grewe, V., and Ponater, M.: Solar cycle effect delays onset of ozone recovery, Geophys. Res. Lett., 33, L03806, doi:10.1029/2005GL024741, 2006.; de Grandpré, J., Beagley, S. R., Fomichev, V. I., Griffioen, E., McConnell, J. C., Medvedev, A. S., and Shepherd, T. G.: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model, J. Geophys. Res., 105, 26 475–26 491, 2000.; Egorova, T., Rozanov, E., Zubov, V., Manzini, E., Schmutz, W., and Peter, T.: Chemistry-climate model SOCOL: a validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557–1576, 2005.; Elterman, L.: UV, visible, and IR attenuation for altitudes to 50 km, Bedford, MA, Air Force Cambridge Research Laboratories, 1968.; Eyring, V., Harris, N. R. P., Rex, M., Shepherd, T. G., Fahey, D. W., Amanatidis, G. T., Austin, J., Chipperfield, M. P., Dameris, M., Forster, P. M. D. F., Gettelman, A., Graf, H. F., Nagashima, T., Newman, P. A., Pawson, S., Prather, M. J., Pyle, J. A., Salawitch, R. J., Santer, B. D., and Waugh, D. W.: A strategy for process-oriented validation of coupled chemistry-climate models, B. Am. Meteorol. Soc., 86, 1117–1133, 2005a.; Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., and Yoshiki, M.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006.; Eyring, V., Waugh, D. W., Bodeker, G. E., Co


Click To View

Additional Books

  • A Wrf Simulation of the Impact of 3-d Ra... (by )
  • Technical Note: Adjoint Formulation of t... (by )
  • Impact of Transatlantic Transport Episod... (by )
  • Modelling Multi-phase Halogen Chemistry ... (by )
  • Retrieval of Cloud Liquid Water Distribu... (by )
  • Air Quality and Radiative Forcing Impact... (by )
  • Modelling the Global Tropospheric Ozone ... (by )
  • Spatial Variations and Development of La... (by )
  • Evolution of Stratospheric Ozone and Wat... (by )
  • Glyoxal Uptake on Ammonium Sulphate Seed... (by )
  • Mixing Processes and Exchanges in the Tr... (by )
  • Contrail Life Cycle and Properties from ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.