World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Past and Future Conditions for Polar Stratospheric Cloud Formation Simulated by the Canadian Middle Atmosphere Model : Volume 8, Issue 4 (01/09/2008)

By Hitchcock, P.

Click here to view

Book Id: WPLBN0003998282
Format Type: PDF Article :
File Size: Pages 29
Reproduction Date: 2015

Title: Past and Future Conditions for Polar Stratospheric Cloud Formation Simulated by the Canadian Middle Atmosphere Model : Volume 8, Issue 4 (01/09/2008)  
Author: Hitchcock, P.
Volume: Vol. 8, Issue 4
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Mclandress, C., Shepherd, T. G., & Hitchcock, P. (2008). Past and Future Conditions for Polar Stratospheric Cloud Formation Simulated by the Canadian Middle Atmosphere Model : Volume 8, Issue 4 (01/09/2008). Retrieved from http://www.ebooklibrary.org/


Description
Description: Department of Physics, University of Toronto, Toronto, ON, Canada. Observations of the Arctic winter lower stratosphere over the past four decades suggest that the thermodynamic conditions required for the formation of polar stratospheric clouds (PSCs) have become increasingly widespread in the Northern Hemisphere. The trend is apparent only in the coldest winters during which the Arctic stratosphere is minimally disturbed by upwelling wave activity from the troposphere. The mechanism responsible for this increase remains unclear. In an effort to evaluate possible mechanisms, we analyze here the polar stratospheric temperatures in an ensemble of three 150-year integrations of the Canadian Middle Atmosphere Model (CMAM), an interactive chemistry-climate model which simulates ozone depletion and recovery, as well as climate change.

We find that in the Antarctic winter lower stratosphere, the low temperature extremes required for PSC formation increase in the model as ozone is depleted, but remain steady through the twenty-first century as the warming from ozone recovery roughly balances the cooling from climate change. Thus, ozone depletion itself plays a major role in the Antarctic response.

The model trend in low temperature extremes in the Arctic through the latter half of the twentieth century is weaker and less statistically robust than the observed trend. It is not projected to continue into the future. Ozone depletion in the Arctic is weaker in the CMAM than in observations, which may account for the weak past trend in low temperature extremes. In the future, radiative cooling in the Arctic winter due to climate change is more than compensated by an increase in dynamically driven downwelling over the pole.


Summary
Past and future conditions for polar stratospheric cloud formation simulated by the Canadian Middle Atmosphere Model

Excerpt
Austin, J., Shindell, D., Beagley, S R., Brühl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, 2003.; de~Grandpré, J., Beagley, S R., Fomichev, V I., Griffioen, E., McConnell, J C., Medvedev, A S., and Shepherd, T G.: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model, J. Geophys. Res., 105, 26 475–26 491, 2000.; Eyring, V., Butchart, N., Waugh, D W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G E., Boville, B A., Brühl, C., Chipperfield, M P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V E., Frith, S M., Garcia, R R., Gettelman, A., Giorgetta, M A., Grewe, V., Jourdain, L., Kinnison, D E., Mancini, E., Manzini, E., Marchand, M., Marsh, D R., Nagashima, T., Newman, P A., Nielsen, J E., Pawson, S., Pitari, G., Plummer, D A., Rozanov, E., Schraner, M., Shepherd, T G., Shibata, K., Stolarski, R S., Struthers, H., Tian, W., and Yoshiki, M.: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, \doi10.1029/2006JD007327, 2006.; Eyring, V., Waugh, D W., Bodeker, G E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S R., Boville, B A., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M P., Dameris, M., Deckert, R., Deushi, M., Frith, S M., Garcia, R R., Gettelman, A., Giorgetta, M A., Kinnison, D E., Mancini, E., Manzini, E., Marsh, D R., Matthes, S., Nagashima, T., Newman, P A., Nielsen, J E., Pawson, S., Pitari, G., Plummer, D A., Rozanov, E., Schraner, M., Scinocca, J F., Semeniuk, K., Shepherd, T G., Shibata, K., Steil, B., Stolarski, R S., Tian, W., and Yoshiki, M.: Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res., 112, D16303, \doi10.1029/2006JD008332, 2007.; Hanson, D R. and Mauersberger, K.: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, J. Geophys. Res., 15, 855–858, 1988.; Langematz, U., Kunze, M., Krüger, K., Labitzke, K., and Roff, G L.: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes, J. Geophys. Res., 108D1, 4027, doi:10.1029/2002JD002069, 2003.; Manney, G L., Krüger, K., Sabutis, J L., Sena, S A., and Pawson, S.: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s, J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367, 2005.; Manzini, E., Steil, B., Brühl, C., Giorgetta, M A., and Krüger, K.: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling, J. Geophys. Res., 108, 4429, \doi10.1029/2002JD002977, 2003.; Newman, P A., Nash, E R., and Rosenfield, J.: What controls the temperature of the Arctic stratosphere during spring?, J. Geophys. Res., 106, 19 999–20 010, 2001.; Pawson, S. and Naujokat, B.: The cold winters of the middle 1990s in the northern lower stratosphere, J. Geophys. Res., 104, 14 209–14 222, 1999.; Rex, M., Salawitch, R J., von~der Gathen, P., Harris, N. R P., Chipperfield, M P., and Naujokat, B.: Arctic ozone loss and climate change, Geophys. Res. Lett., 31, L04116, \doi10.1029/2003GL018844, 2004.; Rex, M., Salawitch, R J., Deckelmann, H., von~der Gathen, P., Harris, N. R P., Chipperfield, M P., Naujokat, B., Reimer, E., Allaart, M., Andersen, S B., Bevilacqua, R., Braathen, G O., Claude, H., Davies, J., Backer, H D., Dier, H., Dorokhov, V., Fast, H., Gerding, M., Godin-Beekmann, S., Hoppel, K., Johnson, B., Kyrö, E., Litynska, Z., Moore, D., Nakane, H., Parrondo, M C., Jr., A. D R., Skrivankova, P., Stübi, R., Viatte, P., Yushkov, V., , and Zerefos, C.: Arctic winter 2005: Implications for stratospheric ozone loss and climate ch

 

Click To View

Additional Books


  • Validation of Envisat/Sciamachy Columnar... (by )
  • Influence of Co2 Observations on the Opt... (by )
  • Changing Shapes and Implied Viscosities ... (by )
  • Comparison of Eulerian and Lagrangian Mo... (by )
  • Atmospheric Mercury Speciation and Mercu... (by )
  • Characterisation of the Photolytic Hono-... (by )
  • Homogeneous Nucleation Rates of Nitric A... (by )
  • Trends and Variability of Midlatitude St... (by )
  • Pm2.5 Pollution in a Megacity of Southwe... (by )
  • Influence of Ice Particle Model on Satel... (by )
  • The Sensitivity of Stratospheric Ozone C... (by )
  • Recent Advances in Understanding the Arc... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.