World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Physical Interpretation of the Spectral Radiative Signature in the Transition Zone Between Cloud-free and Cloudy Regions : Volume 8, Issue 5 (26/09/2008)

By Chiu, J. C.

Click here to view

Book Id: WPLBN0003998311
Format Type: PDF Article :
File Size: Pages 32
Reproduction Date: 2015

Title: Physical Interpretation of the Spectral Radiative Signature in the Transition Zone Between Cloud-free and Cloudy Regions : Volume 8, Issue 5 (26/09/2008)  
Author: Chiu, J. C.
Volume: Vol. 8, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Marshak, A., Knyazikhin, Y., Pilewskie, P., Chiu, J. C., & Wiscombe, W. J. (2008). Physical Interpretation of the Spectral Radiative Signature in the Transition Zone Between Cloud-free and Cloudy Regions : Volume 8, Issue 5 (26/09/2008). Retrieved from

Description: University of Maryland Baltimore County, Baltimore, MD, USA. One-second-resolution zenith radiance measurements from the Atmospheric Radiation Measurement program's new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a remarkable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol properties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical considerations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains unchanged. In addition, the width of transition zones from SWS data is in the range of 50–150 m, which differs from the width in satellite observations (a few kilometers) and in airborne lidar data (1–2 km).

Physical interpretation of the spectral radiative signature in the transition zone between cloud-free and cloudy regions

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32 141–32 158, 1998.; Allan, J. D., Baumgardner, D., Raga, G. B., Mayol-Bracero, O. L., Morales-García, F., Garc\'ia-Garc\'ia, F., Montero-Mart\'inez, G., Borrmann, S., Schneider, J., Mertes, S., Walter, S., Gysel, M., Dusek, U., Frank, G. P., and Krämer, M.: Clouds and aerosols in Puerto Rico – a new evaluation, Atmos. Chem. Phys., 8, 1293–1309, 2008.; Baker, M. B., Corbin, R. G., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing. Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.; Blyth, A. M., Lasher-Trapp, S. G., and Cooper, W. A.: A study of thermals in cumulus clouds, Q. J. Roy. Meteor. Soc., 131, 1171–1190, 2005.; Berendes, T. A., Berendes, D. A., Welch, R. M., Dutton, E. G., Uttal, T., and Clothiaux, E. E.: Cloud cover comparisons of the MODIS daytime cloud mask with surface instruments at the North Slope of Alaska ARM site, IEEE T. Geosci. Remote, 42, 2584–2593, 2004.; Box, M. A., Gerstl, S. A. W., and Simmer, C.: Application of the adjoint formulation to the calculation of atmospheric radiative effects, Beitr. Phys. Atmos., 61, 303–311, 1988.; Brenguier, J.-L., Bourrianne, T., Coelho, A. D., Isbert, J., Peytavi, R., Trevarin, D., and Weschler, P.: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe), J. Atmos. Ocean. Tech., 15, 1077–1090, 1998.; Brennan, J. I., Kaufman, Y. J., Koren, I., and Li, R. R.: Aerosol-cloud interaction – Misclassification of MODIS clouds in heavy aerosol, IEEE T. Geosci. Remote, 43, 911–915, 2005.; Charlson, R. J., Ackerman, A. S., Bender, F. A.-M., Anderson, T. L., and Liu, Z.: On the climate forcing consequences of the albedo continuum between cloudy and clear air, Tellus B, 59, 715–727, 2007.; Chiu, J. C., Marshak, A., Knyazikhin, Y., Wiscombe, W. J., Barker, H. W., Barnard, J. C., and Luo, Y.: Remote sensing of cloud properties using ground-based measurements of zenith radiance, J. Geophys. Res., 111, D16201, doi:10.1029/2005JD006843, 2006.; Clarke, A. D., Howell, S., Quinn, P. K., Bates, T. S., Ogren, J. A., Andrews, E., Jefferson, A., Massling, A., Mayol-Bracero, O., Maring, H., Savoie, D., and Cass, G.: INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft, J. Geophys. Res., 107(D19), 8033, doi:10.1029/2001JD00572, 2002.; Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R. T., Miller, M. A., and Martner, B. E.: Ojbective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites, J. Appl. Meteorol., 39, 645–665, 2000.; Coakley, J. A., Friedman, M. A., and Tahnk, W. R.: Retrieval of cloud properties for partly cloudy imager pixels, J. Atmos. Ocean. Tech., 22, 3–17, 2005; Davis, A., Marshak, A., Gerber, H., and Wiscombe, W. J.: Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales, J. Geophys. Res., 104, 6123–6144, 1999.; Diner, D. J., Ackerman, T. P., Anderson, T. L., Bosenberg, J., Braverman, A. J., Charlson, R. J., Collins, W. D., Davies, R., Holben, B. N., Hostetler, C. A., Kahn, R. A., Martonchik, J. V., Menzies, R. T., Miller, M. A., Ogren, J. A., Penner, J. E., Rasch, P. J., Schwartz, S. E., Seinfeld, J. H., Stephens, G. L., Torres, O., Travis, L. D., Wielicki, B. A., and Yu, B.: PARAGON – an integrated approach for characterizing aerosol climate impacts and environmental interactions, B. Am. Meteorol. Soc., 85, 1491–1501, 2004.; Freud, E., Rosenfeld, D., Andreae, M. O., Costa, A. A., and Artaxo, P.: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds, Atmos. Chem. Phys., 8, 1661–1675, 2008.; Gomez-Chova, L., Camps-Valls, G., Calpe


Click To View

Additional Books

  • The Tropical Forest and Fire Emissions E... (by )
  • Chemistry of New Particle Growth in Mixe... (by )
  • Avoiding Hfc Growth is Critical for Keep... (by )
  • Applicability of Condensation Particle C... (by )
  • The High Arctic in Extreme Winters: Vort... (by )
  • Contributions of Vehicular Carbonaceous ... (by )
  • Simulation of Mineral Dust Aerosol with ... (by )
  • Modeling Secondary Organic Aerosol Forma... (by )
  • Influence of Ice Particle Model on Satel... (by )
  • Non-coincident Inter-instrument Comparis... (by )
  • Anthropogenic Influence on Soa and the R... (by )
  • A Global Non-hydrostatic Model Study of ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.