World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Effects of Boundary Layer Particle Formation on Cloud Droplet Number and Changes in Cloud Albedo from 1850 to 2000 : Volume 9, Issue 1 (27/02/2009)

By Merikanto, J.

Click here to view

Book Id: WPLBN0003998443
Format Type: PDF Article :
File Size: Pages 25
Reproduction Date: 2015

Title: Effects of Boundary Layer Particle Formation on Cloud Droplet Number and Changes in Cloud Albedo from 1850 to 2000 : Volume 9, Issue 1 (27/02/2009)  
Author: Merikanto, J.
Volume: Vol. 9, Issue 1
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Spracklen, D. V., Pringle, K. J., Carslaw, K. S., & Merikanto, J. (2009). Effects of Boundary Layer Particle Formation on Cloud Droplet Number and Changes in Cloud Albedo from 1850 to 2000 : Volume 9, Issue 1 (27/02/2009). Retrieved from

Description: School of Earth and Environment, University of Leeds, Leeds, UK. We use a global aerosol microphysics model to estimate the effect of boundary layer particle formation on cloud droplet number concentration (CDNC) on global and regional scales. The calculations are carried out for years 1850 and 2000 using historical emissions inventories for primary particles and aerosol precursor gases. Predicted CDNC in 2000 are in good agreement with in-situ observations when particle formation is included. We find that particle formation increases global annual mean CDNC by approximately the same amount in both years (16.0% in 1850 and 13.5% in 2000). Thus, global mean changes in cloud albedo are similar with and without particle formation. However, there are substantial regional effects of up to 50% enhancement or suppression of the 1850–2000 albedo change. Over most modern-day polluted Northern Hemisphere regions particle formation suppresses the 1850–2000 increase in CDNC and cloud albedo. Over the Arctic the albedo change is suppressed by 23% in the annual mean and by 43% in summer when particle formation is taken into account. The albedo change of the persistent stratocumulus cloud deck west of Chile is enhanced by 49%.

Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000

Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, J. Geophys. Res., 107(D19), 4370, doi:10.1029/2001JD001010, 2002.; Bond,~T., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840, 2007.; Bonn, B., Kulmala, M., Riipinen, I., Sihto, S.-L., and Ruuskanen, T. M.: How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation, J. Geophys. Res., 113, D12209, doi:10.1029/2007JD009327, 2008.; Chipperfield, M.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments, Q. J. R. Meteorol. Soc., 132, 1179–1203, doi:10.1256/qj.05.51, 2006.; Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years~2000 and~1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, 2006.; Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles, Science, 312, 1375, doi:10.1126/science.1125261, 2006.; Fernandes, S D., Trautmann, N. M., Streets, D. G., Roden C. A., and Bond, T. C.: Global biofuel use, Global Biogeochem. Cycles, 21, GB2019, doi:10.1029/2006GB002836, 2007.; Fountoukis,~C. and Nenes,~A.: Continued developement of a cloud droplet formation parameterization for global climate models, J. Geophys. Res.–Atmos., 110, D11212, doi:10.1029/2004JD005591, 2005.; Fountoukis, C., Nenes, A., Meskhidze, N., Bahreini, R., Conant, W. C., Jonsson, H. Murphy, S., Sorooshian, A., Varutbangkul, V., Brechtel, F., Flagan, R. C., and Seinfeld, J. H.: Aerosol�cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation~2004 campaign, J. Geophys. Res., 112, D10S30, doi:10.1029/2006JD007272, 2007.; Gaydos, T. M., Stanier, C. O., and Pandis, S. N.: Modeling of in situ ultrafine atmospheric particle formation in the eastern United States, J. Geophys. Res., 110, D07S12, doi:10.1029/2004JD004683, 2005.; Gong,~S L.: A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochem. Cycles, 17(4), 1097, doi:10.1029/2003GB002079, 2003.; Guenther,~A., Hewitt, C. N., and Erickson, D., et al.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, doi:10.1029/94JD02950, 1995.; Gultepe, I. and Isaac, G. A.: The effects of air-mass origin on Arctic cloud microphysical parameters during FIRE.ACE, J. Geophys. Res., 107(C10), 8029, doi:10.1029/2000JC000440, 2002.; Gultepe, I. and Isaac, G. A.: Aircraft observations of cloud droplet number concentration: Implications for climate studies, Q. J. R. Meteorol. Soc., 130, 2377-2390, 2004.; Hirsikko, A., Laakso, L., Horrak, U., Aalto, P. P., Kerminen, V. M., and Kulmala, M.: Annual and size dependent variation of growth rates and ion concentrations in boreal forest, Boreal Environ. Res., 10(5), 357–369, 2005.; IPCC: 4th Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, WG1, 502, 2007.; Jung, J., Adams, P. J., and Pandis, S. N.: Simulating the size distribution and chemical composition of ultrafine particles during nucleation events, Atmos. Environ., 40, 2248–2259, 2006.; Kerminen, V.-M. and Kulmala, M.: Analytical formulae connecting the real and the apparent nucleation rate and the nuclei number concentration for atmospheric nucleation


Click To View

Additional Books

  • Characteristics and Formation Mechanism ... (by )
  • Application of Φ-iasi to Iasi: Retrieval... (by )
  • Corrigendum to Use of a Global Model to ... (by )
  • Total Oh Reactivity Measurements in Pari... (by )
  • Simultaneous Aerosol Measurements of Unu... (by )
  • Composition Changes After the Halloween ... (by )
  • The Contribution of Plume-scale Nucleati... (by )
  • The Effects of Heating by Transported Du... (by )
  • The Isotopic Composition of Precipitatio... (by )
  • Impact of Upper-level Jet-generated Iner... (by )
  • Temporal Variations in Black Carbon Conc... (by )
  • Analysis of Hcl and Clo Time Series in t... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.