World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Calibration and Validation of Water Vapour Lidar Measurements from Eureka, Nunavut, Using Radiosondes and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer : Volume 6, Issue 3 (15/03/2013)

By Moss, A.

Click here to view

Book Id: WPLBN0003999298
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Calibration and Validation of Water Vapour Lidar Measurements from Eureka, Nunavut, Using Radiosondes and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer : Volume 6, Issue 3 (15/03/2013)  
Author: Moss, A.
Volume: Vol. 6, Issue 3
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Mccullough, E., Sica, R. J., Strawbridge, K., Walker, K., Moss, A., & Drummond, J. (2013). Calibration and Validation of Water Vapour Lidar Measurements from Eureka, Nunavut, Using Radiosondes and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer : Volume 6, Issue 3 (15/03/2013). Retrieved from http://www.ebooklibrary.org/


Description
Description: Department of Physics and Astronomy, The University of Western Ontario, London, Canada. The Canadian Network for the Detection of Atmospheric Change and Environment Canada DIAL lidar located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, has been upgraded to measure water vapour mixing ratio profiles. The lidar is capable of measuring water vapour in the dry Arctic atmosphere up to the tropopause region. Measurements were obtained in the February to March polar sunrise during 2007, 2008 and 2009 as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign. Before such measurements can be used to address important questions in understanding dynamics and chemistry, the lidar measurements must be calibrated against an independent determination of water vapour. Here, radiosonde measurements of relative humidity have been used to empirically calibrate the lidar measurements. It was found that the calibration varied significantly between each year's campaign. However, the calibration of the lidar during an individual polar sunrise campaign agrees on average with the local radiosonde measurements to better than 12%. To independently validate the calibration of the lidar derived from the radiosondes, comparisons are made between the calibrated lidar measurements and water vapour measurements from the ACE satellite-borne Fourier Transform Spectrometer (ACE-FTS). The comparisons between the lidar and satellite-borne spectrometer for both a campaign average and single overpasses show favourable agreement between the two instruments and help validate the lidar's calibration. The 39 nights of high-Arctic water vapour measurements obtained offer the most detailed high spatial-temporal resolution measurement set available for understanding this time of transition from the long polar night to polar day.

Summary
Calibration and validation of water vapour lidar measurements from Eureka, Nunavut, using radiosondes and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer

Excerpt
Anderson, G. P., Chetwynd Jr., J. H., Theriault, J. M., Acharya, P. K., Berk, A., Robertson, D. C., Kneizys, F. X., Hoke, M. L., Abreu, L. W., and Shettle, E. P.: MODTRAN2: Suitability for remote sensing, in: Optical Engineering and Photonics in Aerospace Sensing, International Society for Optics and Photonics, Bellingham, Washington, USA, 514–525, 1993.; Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P. F., Colin, R., DeCola, P., Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P. F., Colin, R., DeCola, P., DeMaziere, M., Drummond, J. R., Dufour, D., Evans, W., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M. A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, doi:10.1029/2005GL022386, 2005.; Boone, C., Nassar, R., Walker, K., Rochon, Y., McLeod, S., Rinsland, C., and Bernath, P.: Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Optics, 44, 7218–7231, 2005.; Carswell, A., Pal, S., and Steinbrecht, W.: Lidar measurements of the middle atmosphere, Can. J. Phys., 69, 1076–1086, 1991.; Hyland, R. W. and Wexler, A.: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K, Trans. Am. Soc. Heat. Refrig. Air-Condition.Eng., 89, 500–519, 2005.; Leblanc, T. and McDermid, I. S.: Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements, Appl. Optics, 47, 5592–5603, 2008.; Melfi, S. H., Lawrence, J. D., and McCormick, M. P.: Observation of Raman Scattering by Water Vapor in Atmosphere, Appl. Phys. Lett., 15, 295–297, 1969.; Pal, S., Carswell, A., Bird, J., Donovan, D., Duck, T., and Whiteway, J.: Lidar measurements of the stratosphere at the Eureka and Toronto NDSC stations, in: Proceedings, edited by: Pal, S. R., York Univ., Inst. Space & Terr. Sci., N York, Canada, 28–39, 1996.; Sherlock, V., Hauchecorne, A., and Lenoble, J.: Methodology for the Independent Calibration of Raman Backscatter Water-Vapor Lidar Systems, Appl. Optics, 38, 5816–5837, 1999.; Steinbrecht, W.: Lidar measurements of ozone, aerosol and temperature in the stratosphere, PhD Thesis, York University, 1994.; Venable, D. D., Whiteman, D. N., Calhoun, M. N., Dirisu, A. O., Connell, R. M., and Landulfo, E.: Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system, Appl. Optics, 50, 4622–4632, 2011.; V{ö}mel, H., Selkirk, H., Miloshevich, L., Valverde-Canossa, J., Vald{é}s, J., Kyr{ö}, E., Kivi, R., Stolz, W., Peng, G., and Diaz, J. A.: Radiation Dry Bias of the Vaisala RS92 Humidity Sensor, J. Atmos. Ocean. Tech., 24, 953–963, 2007.; Wade, C. G.: An Evaluation of Problems Affecting the Measurement of Low Relative-Humidity on the United-States Radiosonde, J. Atmos. Ocean. Tech., 11, 687–700, 1994.; Whiteman, D. N.: Examination of the traditional Raman lidar technique, 1. Evaluating the temperature-dependent lidar

 

Click To View

Additional Books


  • Quantitative Infrared Absorption Cross S... (by )
  • Observation of Tropospheric Δ D by Iasi ... (by )
  • Ground-based Direct-sun Doas and Airborn... (by )
  • A Fourier Transform Infrared Trace Gas A... (by )
  • Towards an Automatic Lidar Cirrus Cloud ... (by )
  • Calibration of the Passive Cavity Aeroso... (by )
  • Estimating Reflectivity Values from Wind... (by )
  • Eddy Covariance Flux Measurements of Amm... (by )
  • Evaluation of Turbulent Dissipation Rate... (by )
  • Quantitative Bias Estimates for Troposph... (by )
  • A Switchable Reagent Ion High Resolution... (by )
  • The Sofia University Atmospheric Data Ar... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.