World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Glyoxal Retrieval from the Ozone Monitoring Instrument : Volume 7, Issue 11 (25/11/2014)

By Chan Miller, C.

Click here to view

Book Id: WPLBN0003999529
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Glyoxal Retrieval from the Ozone Monitoring Instrument : Volume 7, Issue 11 (25/11/2014)  
Author: Chan Miller, C.
Volume: Vol. 7, Issue 11
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Abad, G. G., Wang, H., Jacob, D. J., Liu, X., Miller, C. C., Chance, K., & Kurosu, T. (2014). Glyoxal Retrieval from the Ozone Monitoring Instrument : Volume 7, Issue 11 (25/11/2014). Retrieved from

Description: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA. We present an algorithm for the retrieval of glyoxal from backscattered solar radiation, and apply it to spectra measured by the Ozone Monitoring Instrument (OMI). The algorithm is based on direct spectrum fitting, and adopts a two-step fitting routine to account for liquid water absorption. Previous studies have shown that glyoxal retrieval algorithms are highly sensitive to the position of the spectral fit window. This dependence was systematically tested on real and simulated OMI spectra. We find that a combination of errors resulting from uncertainties in reference cross sections and spectral features associated with the Ring effect are consistent with the fit-window dependence observed in real spectra. This implies an optimal fitting window of 435–461 nm, consistent with previous satellite glyoxal retrievals. The results from the retrieval of simulated spectra also support previous findings that have suggested that glyoxal is sensitive to NO2 cross-section temperature. The retrieval window limits of the liquid water retrieval are also tested. A retrieval window 385–470 nm reduces interference with strong spectral features associated with sand. We show that cross-track dependent offsets (stripes) present in OMI can be corrected using offsets derived from retrieved slant columns over the Sahara, and apply the correction to OMI data. Average glyoxal columns are on average lower than those of previous studies likely owing to the choice of reference sector for offset correction. OMI VCDs (vertical column densities)are lower compared to other satellites over the tropics and Asia during the monsoon season, suggesting that the new retrieval is less sensitive to water vapour abundance. Consequently we do not see significant glyoxal enhancements over tropical oceans. OMI-derived glyoxal-to-formaldehyde ratios over biogenic and anthropogenic source regions are consistent with surface observations.

Glyoxal retrieval from the Ozone Monitoring Instrument

Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res., 113, D15303, <a href=>doi:10.1029/2007JD009505, 2008.; González Abad, G., Allen, N. D. C., Bernath, P. F., Boone, C. D., McLeod, S. D., Manney, G. L., Toon, G. C., Carouge, C., Wang, Y., Wu, S., Barkley, M. P., Palmer, P. I., Xiao, Y., and Fu, T. M.: Ethane, ethyne and carbon monoxide concentrations in the upper troposphere and lower stratosphere from ACE and GEOS-Chem: a comparison study, Atmos. Chem. Phys., 11, 9927–9941, <a href=>doi:10.5194/acp-11-9927-2011, 2011.; González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., and Suleiman, R.: Updated SAO OMI formaldehyde retrieval, Atmos. Meas. Tech. Discuss., 7, 1–31, <a href=>doi:10.5194/amtd-7-1-2014, 2014.; Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, <a href=>doi:10.5194/acp-6-3181-2006, 2006.; Huisman, A. J., Hottle, J. R., Galloway, M. M., DiGangi, J. P., Coens, K. L., Choi, W., Faloona, I. C., Gilman, J. B., Kuster, W. C., de Gouw, J., Bouvier-Brown, N. C., Goldstein, A. H., LaFranchi, B. W., Cohen, R. C., Wolfe, G. M., Thornton, J. A., Docherty, K. S., Farmer, D. K., Cubison, M. J., Jimenez, J. L., Mao, J., Brune, W. H., and Keutsch, F. N.: Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007, Atmos. Chem. Phys., 11, 8883–8897, <a href=>doi:10.5194/acp-11-8883-2011, 2011.; Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, <a href=>doi:10.5194/acp-5-1053-2005, 2005.; Kleipool, Q. L.: Transient signal flagging algorithm definition for radiance data, Tech. Rep. TN-OMIE-KNMI-717 TN-OMIE-KNMI-717 TN-OMIE-KNMI-717 TN-OMIE-KNMI-717 TN-OMIE-KNMI-717, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands, 2005.; Rogers, C.: Inverse methods for atmospheric sounding, Vol. 2 of Atmospheric, Oceanic and Planetary Physics, World Scientific, Singapore, 2000.; Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth surface reflectance climatology from 3 years of OMI data, J. Geophys. Res.-Atmos., 113, D18308, <a href=>doi:10.1029/2008JD010290, 2008.; Klimont, Z., Streets, D. G., Gupta, S., Cofala, J., Lixin, F., and Ichikawa, Y.: Anthropogenic emissions of non-methane volatile organic compounds in China, Atmos. Environ., 36, 1309–1322, <a href=>doi:10.1016/S1352-2310(01)00529-5, 2002.; Lee, Y.-N., Zhou, X., and Hallock, K.: Atmospheric carbonyl compounds at a rural southeastern United States site, J. Geophys. Res.-Atmos., 100, 25933–25944, 1995.; Lelieveld, J. and Dentener, F. J.: What controls tropospheric ozone?, J. Geophys. Res.-Atmos., 105, 3531–3551, 2000.; Lerot, C., Stavrakou, T., De Smedt, I., Müller, J.-F., and Van Roozendael, M.: Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model, Atmos. Chem.


Click To View

Additional Books

  • The Mechanical and Thermal Setup of the ... (by )
  • Retrieving Aerosol in a Cloudy Environme... (by )
  • Tranc – a Novel Fast-response Converter ... (by )
  • Cloud Retrievals from Satellite Data Usi... (by )
  • Water Droplet Calibration of the Cloud D... (by )
  • Three-dimensional Simulation of the Ring... (by )
  • Validation of Routine Continuous Airborn... (by )
  • A Fiber-coupled Laser Hygrometer for Air... (by )
  • The Scientific Basis for a Satellite Mis... (by )
  • Misr Empirical Stray Light Corrections i... (by )
  • Radar-radiometer Retrievals of Cloud Num... (by )
  • Ground-based Remote Sensing of Thin Clou... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.