World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Retrieval of Aerosol Backscatter and Extinction from Airborne Coherent Doppler Wind Lidar Measurements : Volume 8, Issue 7 (21/07/2015)

By Chouza, F.

Click here to view

Book Id: WPLBN0003999750
Format Type: PDF Article :
File Size: Pages 18
Reproduction Date: 2015

Title: Retrieval of Aerosol Backscatter and Extinction from Airborne Coherent Doppler Wind Lidar Measurements : Volume 8, Issue 7 (21/07/2015)  
Author: Chouza, F.
Volume: Vol. 8, Issue 7
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Rahm, S., Groß, S., Reitebuch, O., Freudenthaler, V., Chouza, F., Toledano, C., & Weinzierl, B. (2015). Retrieval of Aerosol Backscatter and Extinction from Airborne Coherent Doppler Wind Lidar Measurements : Volume 8, Issue 7 (21/07/2015). Retrieved from

Description: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany. A novel method for calibration and quantitative aerosol optical property retrieval from Doppler wind lidars (DWLs) is presented in this work. Due to the strong wavelength dependence of the atmospheric molecular backscatter and the low sensitivity of the coherent DWLs to spectrally broad signals, calibration methods for aerosol lidars cannot be applied to coherent DWLs usually operating at wavelengths between 1.5 and 2 μm. Instead, concurrent measurements of an airborne DWL at 2 μm and the POLIS ground-based aerosol lidar at 532 nm are used in this work, in combination with sun photometer measurements, for the calibration and retrieval of aerosol backscatter and extinction profiles at 532 nm.

The proposed method was applied to measurements from the SALTRACE experiment in June–July 2013, which aimed at quantifying the aerosol transport and change in aerosol properties from the Sahara desert to the Caribbean. The retrieved backscatter and extinction coefficient profiles from the airborne DWL are within 20 % of POLIS aerosol lidar and CALIPSO satellite measurements. Thus the proposed method extends the capabilities of coherent DWLs to measure profiles of the horizontal and vertical wind towards aerosol backscatter and extinction profiles, which is of high benefit for aerosol transport studies.

Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements

Ansmann, A. and Müller, D.: Lidar and Atmospheric Aerosol Particles, in: Lidar, edited by: Weitkamp, C., Springer, New York, 105–141, 2005.; Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31, 7113–7113, 1992.; Bufton, J. L., Hoge, F. E., and Swift, R. N.: Airborne measurements of laser backscatter from the ocean surface, Appl. Optics, 22, 2603–2618, 1983.; Ansmann, A., Petzold, A., Kandler, K., Tegen, I., Wendisch, M., Müller, D., Weinzierl, B., Müller, T., and Heintzenberg, J.: Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?, Tellus B, 63, 403–429, 2011.; Böckmann, C., Wandinger, U., Ansmann, A., Bösenberg, J., Amiridis, V., Boselli, A., Delaval, A., De Tomasi, F., Frioud, M., Grigorov, I., Hågård, A., Horvat, M., Iarlori, M., Komguem, L., Kreipl, S., Larchevêque, G., Matthias, V., Papayannis, A., Pappalardo, G., Rocadenbosch, F., Rodrigues, J., Schneider, J., Shcherbakov, V., and Wiegner, M.: Aerosol lidar inter- comparison in the framework of the EARLINET project: Part II – Aerosol backscatter algo- rithms, Appl. Optics, 43, 977–989, 2004.; Bou Karam, D., Flamant, C., Knippertz, P., Reitebuch, O., Pelon, J., Chong, M., and Dabas, A.: Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: A representative case-study, Q. J. Roy. Meteor. Soc., 134, 621–634, 2008.; Cutten, D. R., Rothermel, J., Jarzembski, M. A., Hardesty, R. M., Howell, J. N., Tratt, D. M., and Srivastava, V.: Radiometric calibration of an airborne CO2 pulsed Doppler lidar with a natural earth surface, Appl. Optics, 41, 3530–3537, 2002.; Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., and Slutsker, I.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104, 31333–31349, 1999.; Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Optics, 23, 652–653, 1984.; Frehlich, R. G. and Kavaya, M. J.: Coherent laser radar performance for general atmospheric refractive turbulence, Appl. Optics, 30, 5325–5352, 1991.; Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D., Althause, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner, M.: Depolarization ratio profiing at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, 61, 165–179, 2009.; Köpp, F., Rahm, S., and Smalikho, I.: Characterization of Aircraft Wake Vortices by 2-μm Pulsed Doppler Lidar, J. Atmos. Ocean. Tech., 21, 194–206, 2004.; Freudenthaler, V., Seefeldner, M., Groß, S., and Wandinger, U.: Accuracy of linear depolarisation ratios in clean air ranges measured with POLIS-6 at 355 and 532 nm, Proceeding of 27. International Laser Radar Conference, 5–10 July 2015, New York, 2015.; Gasteiger, J., Wiegner, M., Groß, S., Freudenthaler, V., Toledano, C., Tesche, M., and Kandler, K.: Modelling lidar-relevant optical properties of complex mineral dust aerosols, Tellus B, 63, 725–741, 2011.; Groß, S., Esselborn, M., Weinzierl, B., Wirth, M., Fix, A., and Petzold, A.: Aerosol classification by airborne high spectral resolution lidar observations, Atmos. Chem. Phys., 13, 2487–2505, doi:10.5194/acp-13-2487-2013, 2013.; Heintzenberg, J.: The SAMUM-1 experiment over Southern Morocco: Overview and introduction, Tellus Series B, 61, 2–11, 2009.; Henderson, S. W., Suni, P. J. M., Hale, C. P., Hannon, S. M., Magee, J. R., Bruns, D. L., and Yuen, E. H.: Coherent laser radar at 2 μm using solid-state lasers, IEEE T. Geosci. Remote, 31.1, 4–15, doi:10.1109/36.210439, 1993.; Henderson, S. W., Gatt


Click To View

Additional Books

  • Ceilometer Lidar Comparison: Backscatter... (by )
  • Cloud Detection and Classification Based... (by )
  • Towards Space Based Verification of Co2 ... (by )
  • Sciamachy Lunar Occultation Water Vapor ... (by )
  • Global Cloud Top Height Retrieval Using ... (by )
  • Contiguous Polarisation Spectra of the E... (by )
  • Synergetic Cloud Fraction Determination ... (by )
  • Tomographic Retrieval of Water Vapour an... (by )
  • Remote Sensing of Atmospheric Trace Gas ... (by )
  • Remote Sensing of Co2 and Ch4 Using Sola... (by )
  • Interannual Variability of Upper Troposp... (by )
  • Observation of the Exhaust Plume from th... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.