World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Field Deployable Diode-laser-based Differential Absorption Lidar (Dial) for Profiling Water Vapor : Volume 7, Issue 11 (18/11/2014)

By Spuler, S. M.

Click here to view

Book Id: WPLBN0004000059
Format Type: PDF Article :
File Size: Pages 38
Reproduction Date: 2015

Title: Field Deployable Diode-laser-based Differential Absorption Lidar (Dial) for Profiling Water Vapor : Volume 7, Issue 11 (18/11/2014)  
Author: Spuler, S. M.
Volume: Vol. 7, Issue 11
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Morley, B., Nehrir, A. R., Moen, D., Repasky, K. S., Spuler, S. M., & Hayman, M. (2014). Field Deployable Diode-laser-based Differential Absorption Lidar (Dial) for Profiling Water Vapor : Volume 7, Issue 11 (18/11/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: National Center for Atmospheric Research, Earth Observing Lab, Boulder, CO 80307, USA. A field deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes has been constructed and tested. Significant advances are discussed, including: a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with opto-mechanical and thermal stability, multi-stage optical filtering enabling measurement during daytime bright-cloud conditions, rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions, and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing and intercomparisons have been performed and are discussed. In general, the instrument has 150 m range resolution with 10 min temporal resolution – 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument was shown capable of autonomous long term field operation – 50 days with a >95% uptime – under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.

Summary
Field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor

Excerpt
American National Standard Institute: American National Standard for Safe Use of Lasers, in: Z136.1-2007, edited by: Laser Institute of America, Orlando, FL, USA, 2007.; Behrendt, A., Wulfmeyer, V., Riede, A., Wagner, G., Pal, S., Bauer, H., and Späth, F.: Scanning differential absorption lidar for 3D observations of the atmospheric humidity field, in: International Laser Radar Conference, St. Petersburg, Russia, p. 3, 2010.; Bösenberg, J. and Linné, H.: Continuous ground-based water vapour profiling using DIAL, in: International Laser Radar Conference, Nara City, Japan, 679–682, 2006.; Ertel, K., Linné, H., and Bösenberg, J.: Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation, Appl. Optics, 44, 5120–5126, 2005.; Feltz, W., Smith, W., Howell, H., Knuteson, R. H. W., and Revercomb, H.: Near-continuous profiling of temperature, moisture, and atmospheric stability using the atmospheric emitted radiance interferometer (AERI), J. Appl. Meteorol., 42, 584–597, 2003.; Goldsmith, J. E., Forest, M., Blair, H., Bisson, S. E., and Turner, D. D.: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols, Appl. Optics, 37, 4979, doi:10.1364/AO.37.004979 1998.; Grossmann, B. E. and Browell, E. V.: Spectroscopy of water-vapor in the 720 nm wavelength region – line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts, J. Mol. Spectrosc., 136, 264–294, 1989.; Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx, T., Ellington, S., Feltz, W., Garcia, R., Howell, H., Smith, W., Short, J., and Tobin, D.: Atmospheric emitted radiance interferometer, Part II: Instrument performance, J. Atmos. Ocean. Tech., 21, 1777–1789, 2004a.; Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx, T. P., Ellington, S., Feltz, W., Garcia, R., Howell, H., Smith, W., Short, J., and Tobin, D.: Atmospheric emitted radiance interferometer, Part I: Instrument Design, J. Atmos. Ocean. Tech., 21, 1763–1776, 2004b.; Lisak, D., Havey, D. K., and Hodges, J. T.: Spectroscopic line parameters of water vapor for rotation-vibration transitions near 7180 cm−1, Phys. Rev. A, 79, 1–10, 2009.; Machol, J. L., Ayers, T., Schwenz, K. T., Koenig, K. W., Hardesty, R. M., Senff, C., Krainak, M. A., Abshire, J. B., Bravo, H. E., and Sandberg, S. P.: Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor, Appl. Optics, 43, 3110–3121, doi:10.1364/AO.43.003110, 2004.; National Research Council: Observing Weather and Climate from the Ground Up: a Nationwide Network of Networks, The National Academies Press, Washington, D.C., 2009.; National Research Council: When Weather Matters: Science and Service to Meet Critical Societal Needs, The National Academies Press, Washington, D.C., 2010.; NCAR Atmospheric Chemistry Division: FRAPPÉ – Front Range Air Pollution and Photochemistry Experiment, available at: https://www2.acd.ucar.edu/frappe, last access: 26 August 2014.; Nehrir, A. R., Repasky, K. S., Carlsten, J. L., Obland, M. D., and Shaw, J. A.: Water vapor profiling using a widely tunable, amplified diode-laser-based Differential Absorption Lidar (DIAL), J. Atmos. Ocean. Tech., 26, 733–745, doi:10.1175/2008JTECHA1201.1, 2009.; Nehrir, A. R., Repasky, K. S., and Carlsten, J. L.: Eye-safe diode-laser-based micropulse Differential Absorption Lidar (DIAL) for water vapor profiling in the lower troposphere, J. Atmos. Ocean. Tech., 28, 131–147, doi:10.1175/2010JTECHA1452.1, 2011.; Nehrir, A. R., Repasky, K. S., and Carlsten

 

Click To View

Additional Books


  • Scanning Supersaturation Condensation Pa... (by )
  • Estimation of Waste Water Treatment Plan... (by )
  • Characterization of Atmospheric Aerosol ... (by )
  • Trend Analysis of Aerosol Optical Thickn... (by )
  • Meteorological Information in Gps-ro Ref... (by )
  • Meteorological Profiling of the Lower Tr... (by )
  • Volcanic Ash Infrared Signature: Porous ... (by )
  • New Perspectives on Gravity Wave Remote ... (by )
  • G-band Atmospheric Radars: New Frontiers... (by )
  • A Better Understanding of Polder's Cloud... (by )
  • Characterisation of Organic Contaminants... (by )
  • A Method for Sizing Submicrometer Partic... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.