World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Performance Assessment of a Triple-frequency Spaceborne Cloud–precipitation Radar Concept Using a Global Cloud-resolving Model : Volume 8, Issue 4 (24/04/2015)

By Leinonen, J.

Click here to view

Book Id: WPLBN0004000447
Format Type: PDF Article :
File Size: Pages 53
Reproduction Date: 2015

Title: Performance Assessment of a Triple-frequency Spaceborne Cloud–precipitation Radar Concept Using a Global Cloud-resolving Model : Volume 8, Issue 4 (24/04/2015)  
Author: Leinonen, J.
Volume: Vol. 8, Issue 4
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Lebsock, M. D., Miyamoto, Y., Yashiro, H., Suzuki, K., Tanelli, S., & Leinonen, J. (2015). Performance Assessment of a Triple-frequency Spaceborne Cloud–precipitation Radar Concept Using a Global Cloud-resolving Model : Volume 8, Issue 4 (24/04/2015). Retrieved from

Description: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA. Multi-frequency radars offer enhanced detection of clouds and precipitation compared to single-frequency systems, and are able to make more accurate retrievals when several frequencies are available simultaneously. An evaluation of a spaceborne three-frequency Ku/Ka/W-band radar system is presented in this study, based on modeling radar reflectivities from the results of a global cloud-resolving model with a 875 m grid spacing. To produce the reflectivities, a scattering model has been developed for each of the hydrometeor types produced by the model, as well as for melting snow. The effects of attenuation and multiple scattering on the radar signal are modeled using a radiative transfer model, while nonuniform beam filling is reproduced with spatial averaging. The combined effects of these are then quantified both globally and in five localized case studies. Two different orbital scenarios using the same radar are compared. Overall, based on the results, it is expected that the proposed radar would detect a high-quality signal in most clouds and precipitation. The main exceptions are the thinnest clouds that are below the detection threshold of the W-band channel, and at the opposite end of the scale, heavy convective rainfall where a combination of attenuation, multiple scattering and nonuniform beam filling commonly cause significant deterioration of the signal; thus, while the latter can be generally detected, the quality of the retrievals is likely to be degraded.

Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model

Battaglia, A. and Tanelli, S.: DOMUS: DOppler MUltiple-Scattering Simulator, IEEE T. Geosci. Remote, 49, 442–450, doi:10.1109/TGRS.2010.2052818, 2011.; Battaglia, A., Tanelli, S., Kobayashi, S., Zrnic, D., Hogan, R. J., and Simmer, C.: Multiple-scattering in radar systems: a review, J. Quant. Spectrosc. Radiat. Transfer, 111, 917–947, doi:10.1016/j.jqsrt.2009.11.024, 2010.; Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. A.: COSP: satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, doi:10.1175/2011BAMS2856.1, 2011.; Fabry, F. and Szyrmer, W.: Modeling of the melting layer. Part II: Electromagnetic, J. Atmos. Sci., 56, 3593–3600, doi:2.0.CO;2>10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2, 1999.; Geer, A. J. and Baordo, F.: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, doi:10.5194/amt-7-1839-2014, 2014.; Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., and Okamoto, H.: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO, J. Geophys. Res.-Atmos., 118, 7273–7292, doi:10.1002/jgrd.50564, 2013.; Haynes, J. M., L'Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C., Wood, N. B., and Tanelli, S.: Rainfall retrieval over the ocean with spaceborne W-band radar, J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973, 2009.; Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 ° to −86 °C, J. Atmos. Sci., 70, 4123–4154, doi:10.1175/JAS-D-12-0124.1, 2013.; Hogan, R. and Battaglia, A.: Fast lidar and radar multiple-scattering models. Part II: Wide-angle scattering using the time-dependent two-stream approximation, J. Atmos. Sci., 65, 3636–3651, doi:10.1175/2008JAS2643.1, 2008.; Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation Measurement (GPM) mission, B. Am. Meteorol. Soc., 95, 701–722, doi:10.1175/BAMS-D-13-00164.1, 2014.; Hélière, A., Lefebvre, A., Wehr, T., Bézy, J.-L., and Durand, Y.: The EarthCARE mission: mission concept and lidar instrument pre-development, in: IEEE Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007, 4975–4978, doi:10.1109/IGARSS.2007.4423978, 2007.; Kneifel, S., Kulie, M. S., and Bennartz, R.: A triple frequency approach to retrieve microphysical snowfall parameters, J. Geophys. Res., 116, D11203, doi:10.1029/2010JD015430, 2011.; Kulie, M. S., Hiley, M. J., Bennartz, R., Kneifel, S., and Tanelli, S.: Triple frequency radar reflectivity signatures of snow: observations and comparisons to theoretical ice particle scattering models, J. Appl. Meteorol. Clim., 53, 1080–1098, doi:10.1175/JAMC-D-13-066.1, 2014.; Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., Adler, R. F., Hou, A., Kakar, R., Wentz, F


Click To View

Additional Books

  • Assessing 5 Years of Gosat Proxy Xch4 Da... (by )
  • Sub 3 Nm Particle Size and Composition D... (by )
  • Tomographic Retrieval of Water Vapour an... (by )
  • A Low Power Automated Max-doas Instrumen... (by )
  • Observation of Volcanic Ash from Puyehue... (by )
  • Improved Identification of Clouds and Ic... (by )
  • Modeling the Ascent of Sounding Balloons... (by )
  • Remote Sensing of Aerosols Over Snow Usi... (by )
  • The Micro-orifice Uniform Deposit Impact... (by )
  • Application of Tomographic Algorithms to... (by )
  • Multispectral Information for Gas and Ae... (by )
  • Eddy Covariance Measurements with High-r... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.