World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Mid-latitude Ionospheric Perturbation Associated with the Spacelab-2 Plasma Depletion Experiment at Millstone Hill : Volume 18, Issue 1 (30/11/-0001)

By Foster, J. C.

Click here to view

Book Id: WPLBN0004000636
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Mid-latitude Ionospheric Perturbation Associated with the Spacelab-2 Plasma Depletion Experiment at Millstone Hill : Volume 18, Issue 1 (30/11/-0001)  
Author: Foster, J. C.
Volume: Vol. 18, Issue 1
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Lanzerotti, L. J., Foster, J. C., & Holt, J. M. (-0001). Mid-latitude Ionospheric Perturbation Associated with the Spacelab-2 Plasma Depletion Experiment at Millstone Hill : Volume 18, Issue 1 (30/11/-0001). Retrieved from

Description: Haystack Observatory, Massachusetts Institute of Technology, Westford, MA 01886, USA. Elevation scans across geomagnetic mid latitudes by the incoherent scatter radar at Millstone Hill captured the ionospheric response to the firing of the Space Shuttle Challenger OMS thrusters near the peak of the F layer on July 30, 1985. Details of the excitation of airglow and the formation of an ionospheric hole during this event have been reported in an earlier paper by Mendillo et al.. The depletion (factor ~2) near the 320 km Shuttle orbital altitude persisted for ~35 min and then recovered to near normal levels, while at 265 km the density was reduced by a factor of ~6; this significant reduction in the bottomside F-region density persisted for more than 3 hours. Total electron content in the vicinity of the hole was reduced by more than a factor of 2, and an oscillation of the F-region densities with 40-min period ensued and persisted for several hours. Plasma vertical Doppler velocity varied quasi-periodically with a ~80-min period, while magnetic field variations observed on the field line through the Shuttle-burn position exhibited a similar ~80-min periodicity. An interval of magnetic field variations at hydromagnetic frequencies (~95 s period) accompanied the ionospheric perturbations on this field line. Radar observations revealed a downward phase progression of the 40-min period density enhancements of -1.12° km-1, corresponding to a 320-km vertical wavelength. An auroral-latitude geomagnetic disturbance began near the time of the Spacelab-2 experiment and was associated with the imposition of a strong southward IMF Bz across the magnetosphere. This created an additional complication in the interpretation of the active ionospheric experiment. It cannot be determined uniquely whether the ionospheric oscillations, which followed the Spacelab-2 experiment, were related to the active experiment or were the result of a propagating ionospheric disturbance (TID) launched by the enhanced auroral activity. The most reasonable conclusion is that the ionospheric oscillations were a result of the coincident geomagnetic disturbance. The pronounced depletion of the bottomside ionosphere, however, accentuated the oscillatory behavior during the interval following the Shuttle OMS burn..

Key words. Ionosphere (active experiments; ionospheric disturbances) · Magnetospheric physics (storms and substorms)

Mid-latitude ionospheric perturbation associated with the Spacelab-2 plasma depletion experiment at Millstone Hill


Click To View

Additional Books

  • On the Role of the Stratosphere in the P... (by )
  • Statistics of 150-km Echoes Over Jicamar... (by )
  • On the Spectrum of Mid-latitude Sporadic... (by )
  • Different Alfvén Wave Acceleration Proce... (by )
  • Corrigendum to Development of the Mesosp... (by )
  • On a New Process for Cusp Irregularity P... (by )
  • On Determining the Noon Polar Cap Bounda... (by )
  • Solar Stereoscopy – Where Are We and Wha... (by )
  • A Parametric Study of the Numerical Simu... (by )
  • On the Role of Oceanic Entrainment Tempe... (by )
  • Characteristics of Episodes with Extreme... (by )
  • On the New Modes of Planetary-scale Elec... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.