World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Role of the Vertical E×B Drift for the Formation of the Longitudinal Plasma Density Structure in the Low-latitude F Region : Volume 26, Issue 7 (30/07/2008)

By Oh, S.-j.

Click here to view

Book Id: WPLBN0004001803
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: The Role of the Vertical E×B Drift for the Formation of the Longitudinal Plasma Density Structure in the Low-latitude F Region : Volume 26, Issue 7 (30/07/2008)  
Author: Oh, S.-j.
Volume: Vol. 26, Issue 7
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Kil, H., Kim, W., Oh, S., Kim, Y. H., & Paxton, L. J. (2008). The Role of the Vertical E×B Drift for the Formation of the Longitudinal Plasma Density Structure in the Low-latitude F Region : Volume 26, Issue 7 (30/07/2008). Retrieved from http://www.ebooklibrary.org/


Description
Description: Department of Physics and Astronomy, FPRD, Seoul National University, Seoul, Korea. The formation of a longitudinally periodic plasma density structure in the low-latitude F region by the effect of vertical E×B drift was investigated by analyzing the ROCSAT-1 satellite data and conducting SAMI2 model simulations. The daytime equatorial ionosphere observed during the equinox in 1999–2002 from ROCSAT-1 showed the formation of wave number-4 structures in the plasma density and vertical plasma drift. The coincidence of the longitudes of the peak density with the longitudes of the peak upward drift velocity during the daytime supported the association of the longitudinal density structure with the vertical E×B drift. The reproduction capability of the observed wave-4 structure by the effect of vertical E×B drift was tested by conducting SAMI2 model simulations during the equinox under solar maximum condition. When the ROCSAT-1 vertical drift data were used, the SAMI2 model could reproduce the observed wave-4 density structure in the low-latitude F region. On the other hand, the SAMI2 model could not reproduce the observed wave-4 structure using the Scherliess and Fejer vertical E×B drift model. The observation and model simulation results demonstrated that the formation of the longitudinally periodic plasma density structure can be explained by the longitudinal variation of the daytime vertical E×B drift.

Summary
The role of the vertical E×B drift for the formation of the longitudinal plasma density structure in the low-latitude F region

Excerpt
England, S. L., Maus, S., Immel, T. J., and Mende, S. B.: Longitudinal variation of the E-region electric fields caused by atmospheric tides, Geophys. Res. Lett., 33, L21105, doi:10.1029/2006GL027465, 2006a.; England, S. L., Immel, T. J., Sagawa, E., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J.: Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly, J. Geophys. Res., 111, A10S19, doi:10.1029/2006JA011795, 2006b.; Fejer, B. G., Scherliess, L., and de Paula, E. R.: Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19 859–19 869, 1999.; Hagan, M. E., Maute, A., Roble, R. G., Richmond, A. D., Immel, T. J., and England, S. L.: Connections between deep tropical clouds and the Earth's ionosphere, Geophys. Res. Lett., 34, L20109, doi:10.1029/2007GL030142, 2007.; Hartman, W. A. and Heelis, R. A.: Longitudinal variations in the equatorial vertical drift in the topside ionosphere, J. Geophys. Res., 112, A03305, doi:10.1029/2006JA011773, 2007.; Hedin, A. E.: Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.; Hedin, A. E., Biondi, M. A., Burnside, R. G., Hernandez, G., Johnson, R. M., Killeen, T. L., Mazaudier, C., Meriwether, J. W., Salah, J. E., Sica, R. J., Smith, R. W., Spencer, N. W., Wickwar, V. B., and Virdi, T. S.: Revised Global Model of Thermosphere Winds Using Satellite and Ground-Based Observations, J. Geophys. Res., 96, 7657–7688, 1991.; Huba, J. D., Joyce, G., and Fedder, J. A.: Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105, 23 035–23 053, 2000.; Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J.: Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161, 2006.; Kelley, M. C.: The Earth's Ionosphere, Academic Press, San Diego, California, 1989.; Kil, H., Oh, S.-J., Paxton, L. J., Zhang, Y., Su, S.-Y., and Min, K.-W.: Spike-like change of the vertical $\vecE\times\vecB$ drift in the equatorial region during very large geomagnetic storms, Geophys. Res. Lett., 34, L09103, doi:10.1029/2007GL029277, 2007.; Kil, H., Talaat, E. R., Oh, S.-J., Paxton, L. J., England, S. L., and Su, S.-Y.: The wave structures of the plasma density and vertical $\vecE\times\vecB$ drift in low-latitude F region, J. Geophys. Res., accepted, 2008.; Lin, C. H., Wang, W., Hagan, M. E., Hsiao, C. C., Immel, T. J., Hsu, M. L., Liu, J. Y., Paxton, L. J., Fang, T. W., and Liu, C. H.: Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi:10.1029/2007GL029265, 2007.; Lühr, H., Haüsler, K., and Stolle, C.: Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides, Geophys. Res. Lett., 34, L16102, doi:10.1029/2007GL030639, 2007.; Mou\el, J.-L., Shebalin, P., and Chulliat, A.: The field of the equatorial electrojet from CHAMP data, Ann. Geophys., 24, 415–527, 2006.; Sagawa, E., Immel, T. J., Frey, H. U., and Mende, S. B.: Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. Geophys. Res., 110, A11302, doi:10.1029/2004JA010848, 2005.; Scherliess, L. and Fejer, B. G.: Radar and satellite global equatorial \it F-region vertical drift model, J. Geophys. Res., 104(A4), 6829–6842, 1999.; Scherliess, L., Thompson, D. C., and Schunk, R. W.: Longitudinal variability of low-latitude total electron content: Tidal influences, J. Geophys. Res., 113, A01311, doi:10.1029/2007JA012480, 2008.; Su, S.-Y., Yeh, H. C., Heelis, R. A., Wu, J. M., Yang, S. C., Lee, L. F., and Chen, H. L.: The ROCSAT-1 IPEI pr

 

Click To View

Additional Books


  • Interaction of Suprathermal Solar Wind E... (by )
  • Longitudinal and Latitudinal Variations ... (by )
  • Magnetosonic Resonance in a Dipole-like ... (by )
  • Interchange Instability of a Curved Curr... (by )
  • A Model of Mid-latitude E-region Plasma ... (by )
  • Ring Current Decay Time Model During Geo... (by )
  • The Morphology of Oxygen Greenline Daygl... (by )
  • Geometrical Characteristics of Magnetosp... (by )
  • Spatial Structure of Auroral Day-time Io... (by )
  • Evolutionary Signatures in Complex Eject... (by )
  • Magnetopause Surface Oscillation Frequen... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.