World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

The Electron Drift Velocity, Ion Acoustic Speed and Irregularity Drifts in High-latitude E-region : Volume 26, Issue 11 (24/10/2008)

By Uspensky, M. V.

Click here to view

Book Id: WPLBN0004001929
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: The Electron Drift Velocity, Ion Acoustic Speed and Irregularity Drifts in High-latitude E-region : Volume 26, Issue 11 (24/10/2008)  
Author: Uspensky, M. V.
Volume: Vol. 26, Issue 11
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Pellinen, R. J., Janhunen, P., & Uspensky, M. V. (2008). The Electron Drift Velocity, Ion Acoustic Speed and Irregularity Drifts in High-latitude E-region : Volume 26, Issue 11 (24/10/2008). Retrieved from

Description: Finnish Meteorological Institute, Erik Palmenin aukio 1, P.O. Box 503, Helsinki 00101, Finland. The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos|<Cs, respectively, where Cs is the ion acoustic speed), is found to be similar and much weaker than suggested earlier. In a band of flow angles 45°<ΘN,F<85° it can be reasonably described by |VirrN,F|∝AN,FCscosnΘN,F, where AN,F≈1.2–1.3 are monotonically increasing functions of VE×B and the index n is ~0.2 or even smaller. This study (a) does not support the conclusion by Nielsen and Schlegel (1985), Nielsen et al. (2002, their #[18]) that at flow angles larger than ~60° (or |VirrN,F|≤300 m/s) the STARE Doppler velocities are equal to the component of the electron drift velocity. We found (b) that if the data points are averages over 100 m/s intervals (bins) of l-o-s electron velocities and 10 deg intervals (bins) of flow angles, then the largest STARE Doppler velocities always reside inside the bin with the largest flow angle. In the flow angle bin 80° the STARE Doppler velocity is larger than its driver term, i.e. the EISCAT l-o-s electron drift velocity component, |VirrN,F|>|VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and described by Kudeki and Farley (1989), Lu et al. (2008) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).

The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

Amm, O., Aksnes, A., Stadsnes, J., Ostgaard, N., Vondrak, R. R., Germany, G. A., Lui, G., and Viljanen, A.: Mesoscale ionospheric electrodynamics of omega bands determined from ground-base electromagnetic and satellite optical observations, Ann. Geophys., 23, 325–342, 2005.; Bahcivan, H., Hysell, D. L., Larsen, M. F., and Pfaff, R. F.: The 30-MHz imaging radar observations of auroral irregularities during the JOULE campaign, J. Geophys. Res., 110, A05307, doi:10.1029/2004/JA010975, 2005.; Ecklund, W. L., Balsley, B. B., and Greenwald, R. A.: Crossed beam measurements of the diffuse radar aurora. J. Geophys. Res., 80(13), 1805–1809, 1975.; Fejer, B. G. and Kelley, M. C.: Ionospheric irregularities, Rev. Geophys. Space Phys., 18, 401–454, 1980.; Greenwald, R. A. and Ecklund, W. L.: A new look at radar auroral motions, J. Geophys. Res., 80(25), 3642–3648, 1975.; Greenwald, R. A., Weiss, W., Nielsen, E., and Thomson, N. R.: STARE: A new radar auroral backscatter experiment in Northern Scandinavia, Radio Sci., 13, 1021–1029, 1978.; Hanuise, C., Villain, J.-P., Gresilon, D., Cabrit, B., Greenwald, R. A., and Beker, K. B.: Interpretation of HF radar ionospheric Doppler spectra by collective wave scattering theory, Ann. Geophys., 11, 29–39, 1993.; Janhunen, P.: Perpendicular particle simulation of $E$ region Farley-Buneman instability, J. Gephys. Res., 99, 11 461–11 473, 1994.; Kamide Y. and Brekke, A.: Altitude of eastward and westward auroral electrojets, J. Geophys. Res., 82, 2851–2853, 1977.; Koustov, A. V., Danskin, D. W., Uspensky, M. V., Ogawa, T., Janhunen, P., Nishitani, N., Nozawa, S., Lester, M., and Milan, S.: Velocities of auroral coherent echoes at 12 and 144 MHz, Ann. Geophys., 20, 1647–1661, 2002.; Kudeki, E. and Farley, D.: Aspect sensitivity of equatorial electrojet irregularities and theoretical implications, J. Geophys. Res., 94, 426–434, 1989.; Lu, F., Farley, D. T., and Swartz, W. E.: Aspect angle measurements of irregularities in the equatorial E region above Jicamarca, J. Geophys. Res., in press, doi:10.1029/2008JA013018, 2008.; Makarevich, R. A., Koustov, A. V., Senior, A., Uspensky, M., Honary F., and Dyson, P. L.: Aspect angle dependence of the $E$ region irregularity velocity at large flow angles, J. Geophys. Res., 112, A11303, doi:10.1029/2007JA012342, 2007.; Moorcroft, D. R. and Tsunoda, R. T.: Rapid scan Doppler velocity maps of the UHF diffuse radar aurora, J. Geophys. Res., 83(4), 1482–1492, 1978.; Nielsen, E. and Schlegel, K.: Coherent radar Doppler measurements and their relationship to the ionospheric electron drift velocity, J. Geophys. Res., 90, 3498–3504, 1985.; Nielsen, E.: Aspect angle dependence of mean Doppler velocities of 1-m auroral plasma waves, J. Geophys. Res., 91, 10 173–10 177, 1986.; Nielsen, E., del Pozo, C. F., and Williams, P. J. S.: VHF coherent radar signals from the $E$ region ionosphere and the relationship to electron drift velocity and ion-acoustic velocity, J. Geophys. Res., 107, 1012, doi:10.1029/2001JA900111, 2002.; Nielsen, E.: Mean velocities measured by the double pulse technique, Ann. Geophys., 22, 3531–3536, 2004.; Oppenheim, M., Otani, N., and Ronchi, C.: Simulation of the Farley-Buneman instability via nonlinear electron $\vecE\times\vecB$ drifts, J. Geophys. Res., 101(8), 17 273–17 286, 1996.; Oppenheim, M. M., Dimant, Y., and Dyrud, L. P.: Large-scale simulations of 2-D fully kinetic Farley-Buneman turbulence, Ann. Geophys., 26, 543–553, 2008.; Ossakow, S. L., Papadopoulos, K., Orens, J., and Coffey, T.: Parallel propagation effects on Type 1 electrojet instability, J. Geophys. Res., 80, 141–148, 1975.; Otani, N. F. and Oppenheim, M.: A saturation mechanism for Farley-Buneman instability, Geophys. Res. Lett., 25, 1833–1836, 1998.; Otani, N. F. and Oppenheim, M.: Saturation of the Farley-Buneman instability via three-mode coupling, J. Geophys. Res., 111, A03302, doi:10.1029/2005JA011215, 2006.; Reinleitner, L. A. and Nielsen, E.: Self-consistent analysis of elect


Click To View

Additional Books

  • Source Mechanism of Saturn Narrowband Em... (by )
  • Storm Time Dynamics of Auroral Electroje... (by )
  • A New Method of Studying the Relation Be... (by )
  • Duskside F-region Dynamo Currents: Its R... (by )
  • Multi-scale Analysis of Turbulence in th... (by )
  • Artificial Periodic Irregularities in th... (by )
  • Preface C/Nofs Results and Equatorial Io... (by )
  • Variations of Topside Ionospheric Scale ... (by )
  • Ionospheric Storms at Geophysically-equi... (by )
  • Studies of Magnetotail Dynamics and Ener... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.