World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Nonlocal Nonlinear Coupling of Kinetic Sound Waves : Volume 32, Issue 11 (13/11/2014)

By Lyubchyk, O.

Click here to view

Book Id: WPLBN0004002413
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: Nonlocal Nonlinear Coupling of Kinetic Sound Waves : Volume 32, Issue 11 (13/11/2014)  
Author: Lyubchyk, O.
Volume: Vol. 32, Issue 11
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany


APA MLA Chicago

Voitenko, Y., & Lyubchyk, O. (2014). Nonlocal Nonlinear Coupling of Kinetic Sound Waves : Volume 32, Issue 11 (13/11/2014). Retrieved from

Description: Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine. We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay), and another into counter-propagating product waves (reverse decay). All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

Nonlocal nonlinear coupling of kinetic sound waves

Briand, C.: Plasma waves above the ion cyclotron frequency in the solar wind: a review on observations, Nonlin. Processes Geophys., 16, 319–329, doi:10.5194/npg-16-319-2009, 2009.; Brodin, G., Stenflo, L., and Shukla, P. K.: Nonlinear Interactions Between Kinetic Alfvén and Ion-Sound Waves, Solar Phys., 236, 285–291, doi:10.1007/s11207-006-0125-2, 2006.; Gurnett, D. A. and Anderson, R. R.: Plasma wave electric fields in the solar wind Initial results from HELIOS 1, J. Geophys. Res., 82, 632–650, doi:10.1029/JA082i004p00632, 1977.; Gurnett, D. A. and Frank, L. A.: Ion acoustic waves in the solar wind, J. Geophys. Res., 83, 58–74, doi:10.1029/JA083iA01p00058, 1978.; Gurnett, D. A., Marsch, E., Pilipp, W., Schwenn, R., and Rosenbauer, H.: Ion acoustic waves and related plasma observations in the solar wind, J. Geophys. Res., 84, 2029–2038, doi:10.1029/JA084iA05p02029, 1979.; Hasegawa, A.: Decay of ion acoustic wave in magnetized plasma, Phys. Lett., 57A, 143–144, doi:10.1016/0375-9601(76)90192-4, 1976.; Hasegawa, A. and Chen, L.: Parametric Decay of Kinetic Alfvén wave and its application to plasma hetaing, Phys. Rev. Lett., 36, 1362–1365, doi:10.1103/PhysRevLett.36.1362, 1976.; Howes, G. G., Bale, S. D., Klein, K. G., Chen, C. H. K., Salem, C. S., and TenBarge, J. M.: The Slow-mode Nature of Compressible Wave Power in Solar Wind Turbulence, Astrophys. J. Lett., 753, L19, doi:10.1088/2041-8205/753/1/L19, 2012.; Kontar, E. P. and Pécseli, H. L.: Nonlinear wave interactions as a model for naturally enhanced ion acoustic lines in the ionosphere, Geophys. Res. Lett., 32, L05110, doi:10.1029/2004GL022182, 2005.; Krishna Prasad, S., Banerjee, D., and Van Doorsselaere, T.: Frequency-dependent Damping in Propagating Slow Magneto-acoustic Waves, Astrophys. J., 789, 118, doi:10.1088/0004-637X/789/2/118, 2014.; Lacombe, C., Salem, C., Mangeney, A., Hubert, D., Perche, C., Bougeret, J.-L., Kellogg, P. J., and Bosqued, J.-M.: Evidence for the interplanetary electric potential? WIND observations of electrostatic fluctuations, Ann. Geophys., 20, 609–618, doi:10.5194/angeo-20-609-2002, 2002.; Melrose, D. B.: Fundamental emission for type III bursts in the interplanetary medium: the role of ion-sound turbulence, Solar Phys., 79, 173–185, doi:10.1007/BF00146981, 1982.; Ofman, L., Wang, T. J., and Davila, J. M.: Slow Magnetosonic Waves and Fast Flows in Active Region Loops, Astrophys. J., 754, 111, doi:10.1088/0004-637X/754/2/111, 2012.; Sedgemore-Schulthess, F. and St.-Maurice, J.-P.: Naturally enhanced ion-acoustic spectra and their interpretation, Surv. Geophys., 22, 55–92, doi:10.1023/A:1010691026863, 2001.; Thejappa, G., MacDowall, R. J., and Bergamo, M.: Evidence for four- and three-wave interactions in solar type III radio emissions, Ann. Geophys., 31, 1417–1428, doi:10.5194/angeo-31-1417-2013, 2013.; Voitenko, Y. and Goossens, M.: Nonlinear coupling of Alfvén waves with widely different cross-field wavelengths in space plasmas, J. Geophys. Res., 110


Click To View

Additional Books

  • Zonal Asymmetry of Daytime 150-km Echoes... (by )
  • Climatological Features of Electron Dens... (by )
  • First Direct Evidence of Meso-scale Vari... (by )
  • Determining Rotational Temperatures from... (by )
  • Weibel Instability in a Plasma with Nonz... (by )
  • Sea Level Variability at Adriatic Coast ... (by )
  • Statistical Analysis of Storm-time Near-... (by )
  • Flow Angle Dependence for the Asymmetry ... (by )
  • Statistical Properties of Joule Heating ... (by )
  • Electrostatic Double Layers as Auroral P... (by )
  • The Quasi-two-day Wave Studied Using the... (by )
  • Predicting Cycle 24 Using Various Dynamo... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.