World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Investigation of Energy Transport and Thermospheric Upwelling During Quiet Magnetospheric and Ionospheric Conditions from the Studies of Low- and Middle-altitude Cusp : Volume 33, Issue 6 (01/06/2015)

By Živković, T.

Click here to view

Book Id: WPLBN0004002567
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Investigation of Energy Transport and Thermospheric Upwelling During Quiet Magnetospheric and Ionospheric Conditions from the Studies of Low- and Middle-altitude Cusp : Volume 33, Issue 6 (01/06/2015)  
Author: Živković, T.
Volume: Vol. 33, Issue 6
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Živković, T., Ritter, P., Buchert, S., Palin, L., & Opgenoorth, H. (2015). Investigation of Energy Transport and Thermospheric Upwelling During Quiet Magnetospheric and Ionospheric Conditions from the Studies of Low- and Middle-altitude Cusp : Volume 33, Issue 6 (01/06/2015). Retrieved from http://www.ebooklibrary.org/


Description
Description: Swedish Institute of Space Physics, University of Uppsala, Sweden. We investigate energy fluxes and small, kilometre-scale Birkeland currents in the magnetospheric cusp at a 1–3 Earth radii altitude and in the ionosphere using satellites when they were, according to the Tsyganenko model, in magnetic conjunction within 50–60 km and up to 15 min apart. We use Cluster and CHAMP satellites, and study three conjunction events that occurred in 2008 and 2009, when the Cluster spacecraft were crossing the cusps at only a few Earth radii altitude. Our goal is to understand better the influence of processes in the magnetospheric cusp on the upper thermosphere and its upwelling which was usually observed by the CHAMP satellite passing the cusp. Three studied events occurred under relatively quiet and steady magnetospheric and ionospheric conditions, which explains why observed thermospheric density enhancements were rather low. Our findings point out that for each studied event soft electron precipitation influences thermospheric density enhancements in a way that stronger electron precipitation produces stronger thermospheric upwelling. Therefore, in the case of these weak events, soft electron precipitation seems to be more important cause of the observed, thermospheric density enhancements than is the Joule heating.

Summary
Investigation of energy transport and thermospheric upwelling during quiet magnetospheric and ionospheric conditions from the studies of low- and middle-altitude cusp

Excerpt
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, <a href=http://dx.doi.org/10.5194/angeo-19-1207-2001>doi:10.5194/angeo-19-1207-2001, 2001.; Birkeland, K.: The Norwegian Aurora Polaris Expedition 1902–1903, 1, 319–801, H. Aschehoug and Co., Christiania (Oslo), 1913.; Baumjohann W.: Ionospheric and field-aligned current systems in the auroral zone: a concise review, Adv. Space Res., 2, 55–62, <a href=http://dx.doi.org/10.1016/0273-1177(82)90363-5>doi:10.1016/0273-1177(82)90363-5, 1982.; Chaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., Parks, G. K., Hull, A., Ergun, R. E., Strangeway, R. J., André, M., Khotyaintsev, Y., Goldstein, M. L., Acuna, M., Lund, E. J., Reme, H., Dandouras, I., Fazakerley, A. N., and Balogh, A.: Energy deposition by Alfven waves into the dayside auroral oval: Cluster and FAST observations, J. Geophys. Res., 110, A02211, <a href=http://dx.doi.org/10.1029/2004JA010483>doi:10.1029/2004JA010483, 2005.; Carlson, H. C., Spain, T., Aruliah, A., and Skjaeveland, A.: First-principles physics of cusp/polar cap thermospheric disturbances, Geophys. Res. Lett., 39, L19103, <a href=http://dx.doi.org/10.1029/2012GL053034>doi:10.1029/2012GL053034, 2012.; Crowley, G., Knipp, D. J., Drake, K. A., Lei, J., Sutton, E., and Lühr, H.: Cellular structures in the high latitude thermosphere, J. Geophys. Res., 101, 211–223, 1996.; Crowley, G., Knipp, D. J., Drake, K. A., Lei, J., Sutton, E., Lühr, H.: Thermospheric density enhancements in the dayside cusp region during strong By conditions, Geophys. Res. Lett., 37, L07110, <a href=http://dx.doi.org/10.1029/2009GL042143>doi:10.1029/2009GL042143, 2010.; Clemmons, J. H., Hecht, J. H., Salem, D. R., Strickland, D. J., Thermospheric density in the Earth's magnetic cusp as observed by the Streak mission, Geophys. Res. Lett., 35, L24103, <a href=http://dx.doi.org/10.1029/2008GL035972>doi:10.1029/2008GL035972, 2008.; Dahlgren, H., Gustavsson, B., Lanchester, Dahlgren, H., Gustavsson, B., Lanchester, B. S., Ivchenko, N., Brändström, U., Whiter, D. K., Sergienko, T., Sandahl, I., and Marklund, G.: Energy and flux variations across thin auroral arcs, Ann. Geophys., 29, 1699–1712, <a href=http://dx.doi.org/10.5194/angeo-29-1699-2011>doi:10.5194/angeo-29-1699-2011, 2011.; Deng, Y., Fuller-Rowell, T. J., Ridley, A. J., Knipp, D., and Lopez, R. E.: Theoretical study: Influence of different energy sources on the cusp neutral density enchancements, J. Geophys. Res., 118, 2340–2349, <a href=http://dx.doi.org/10.1002/jgra.50197>doi:10.1002/jgra.50197, 2013.; Doornbos, E., van den IJssel, J., Lühr, H., Förster, M., and Koppenwallner, G.: Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on Satellites, J. Spacecraft Rockets, 47, 580–589, 2010.; Gustafsson, G., André, M., Carozzi, T., Eriksson, A. I., Fälthammar, C.-G., Grard, R., Holmgren, G., Holtet, J. A., Ivchenko, N., Karlsson, T., Khotyaintsev, Y., Klimov, S., Laakso, H., Lindqvist, P.-A., Lybekk, B., Marklund, G., Mozer, F., Mursula, K., Pedersen, A., Popielawska, B., Savin, S., Stasiewicz, K., Tanskanen, P., Vaivads, A., and Wahlund, J.-E.: First results of electric field and density observations by Cluster EFW based on initial months of operation, Ann. Geophys., 19, 1219–1240, <a href=http://dx.doi.org/10.5194/angeo-19-1219-2001>doi:10.5194/angeo-19-1219-2001, 2001.; Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.; Johnstone, A. D.


 

Click To View

Additional Books


  • Cosmic Ray-induced Stratospheric Aerosol... (by )
  • Global Morphology of Night-time NmF2 Enh... (by )
  • Satellite Observations of Lightning-indu... (by )
  • Long-term Trends in the Relation Between... (by )
  • Statistical Analysis of Wave Parameters ... (by )
  • First Hf Radar Measurements of Summer Me... (by )
  • Travelling Ionospheric Disturbance Prope... (by )
  • Comparison of Eight Years Magnetic Field... (by )
  • Statistical Study of the Substorm Onset:... (by )
  • Mapping Ionospheric Backscatter Measured... (by )
  • Vertical Distribution of Aerosols Over t... (by )
  • Equatorial Electrojet as Part of the Glo... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.