World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Comparison of Soil Greenhouse Gas Fluxes from Extensive and Intensive Grazing in a Temperate Maritime Climate : Volume 10, Issue 2 (26/02/2013)

By Skiba, U.

Click here to view

Book Id: WPLBN0004002872
Format Type: PDF Article :
File Size: Pages 11
Reproduction Date: 2015

Title: Comparison of Soil Greenhouse Gas Fluxes from Extensive and Intensive Grazing in a Temperate Maritime Climate : Volume 10, Issue 2 (26/02/2013)  
Author: Skiba, U.
Volume: Vol. 10, Issue 2
Language: English
Subject: Science, Biogeosciences
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Helfter, C., Dinsmore, K., Jones, S. K., Drewer, J., Mckenzie, R., Skiba, U.,...Nemitz, E. (2013). Comparison of Soil Greenhouse Gas Fluxes from Extensive and Intensive Grazing in a Temperate Maritime Climate : Volume 10, Issue 2 (26/02/2013). Retrieved from

Description: Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK. Greenhouse gas (GHG) fluxes from a seminatural, extensively sheep-grazed drained moorland and intensively sheep-grazed fertilised grassland in South East (SE) Scotland were compared over 4 yr (2007–2010). Nitrous oxide (N2O) and methane (CH4) fluxes were measured by static chambers, respiration from soil plus ground vegetation by a flow-through chamber, and the net ecosystem exchange (NEE) of carbon dioxide (CO2) by eddy-covariance. All GHG fluxes displayed high temporal and interannual variability. Temperature, radiation, water table height and precipitation could explain a significant percentage of seasonal and interannual variations. Greenhouse gas fluxes were dominated by the net ecosystem exchange of CO2 at both sites. Net ecosystem exchange of CO2 and respiration was much larger on the productive fertilised grassland (−1567 and 7157 g CO2eq m<sup>−2 yr−1, respectively) than on the seminatural moorland (−267 and 2554 g CO2eq m<sup>−2 yr−1, respectively). Large ruminant CH4 (147 g CO2eq m<sup>−2 yr−1) and soil N2O (384 g CO2eq m<sup>−2 yr−1) losses from the grazed grassland counteracted the CO2 uptake by 34%, whereas the small N2O (0.8 g CO2eq m<sup>−2 yr−1) and CH4 (7 g CO2eq m<sup>−2 yr−1) emissions from the moorland only impacted the NEE flux by 3%. The 4-yr average GHG budget for the grazed grassland was −1034 g CO2eq m<sup>−2 yr−1 and −260 g CO2eq m<sup>−2 yr−1 for the moorland.

Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate

Bakken, L. R., Bergaust, L., Liu, B., and Frostegard, A.: Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soil, Philos. T. R. Soc. B., 367, 1226–1234, 2012.; Bouwman, A. F.: Direct emission of nitrous oxide from agricultural soils, Nutr. Cycl. Agroecosys., 46, 53–70, 1996.; Cardenas, L. M., Thorman, R., Ashlee, N., Butler, M., Chadwick, D., Chambers, B., Cuttle, S., Donovan, N., Kingston, H., Lane, S., Dhanoa, M. S., and Scholefield, D.: Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agr. Ecosyst. Environ., 136, 218–226, 2010.; Carter, M. S., Larsen, K. S., Emmett, B., Estiarte, M., Field, C., Leith, I. D., Lund, M., Meijide, A., Mills, R. T. E., Niinemets, Ü., Peñuelas, J., Portillo-Estrada, M., Schmidt, I. K., Selsted, M. B., Sheppard, L. J., Sowerby, A., Tietema, A., and Beier, C.: Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands – responses to climatic and environmental changes, Biogeosciences, 9, 3739–3755, <a href=>doi:10.5194/bg-9-3739-2012a>, 2012.; Clayton, H., Arah, J. R. M., and Smith, K. A.: Measurement of nitrous oxide emissions from fertilised grassland using closed chamber, J. Geophys. Res., 99, 16599–16607, 1994.; Dengel, S., Levy, P., Grace, J., Jones, S. K., and Skiba, U. M.: Methane emissions from sheep pasture, measured with an open-path eddy covariance system, Global Change Biol., 17, 3524–3533, 2011.; Dinsmore, K. J.: Atmosphere-Soil-Stream Greenhouse GS Fluxes from Peatland, PhD Thesis, University of Edinburgh, UK, 2008.; Dinsmore, K. J., Skiba, U. M., Billett, M. F., Rees, R. M., and Drewer, J.: Spatial and temporal variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland; implications for modelling and upscaling, Soil Biol. Biochem., 41, 1315–1323, 2009.; Dise, N. B., Gorham, E., and Verry E. S.: Environmental-factors controlling methane emissions from peatlands in Northern Minnesota, J. Geophys. Res., 98, 10583–10594, 1993.; Drewer, J., Lohila, A., Aurela, M., Laurila, T., Minkkinen, K., Penttilä, T., Dinsmore, K. J., McKenzie, R., Helfter, C., Flechard, C., Sutton, M. A., and Skiba, U. M.: Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a pristine mire in Finland, Eur. J. Soil Sci., 61, 640–650, 2010.; Flechard, C. R., Ambus, P., Skiba, U. M., Rees, R. M., Hensen, A., van Amstel, A., van den Pol-van Dasselaar, A., Soussana, J.-F., Jones, M., Clifton-Brown, J., Raschi, A., Horvath, L., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J.,Calanca, P., Thalman, E., Pilegaard, K., Di Marco, C., Campbell, C., Nemitz, E.,Hargreaves, K. J., Levy, P., Ball, B. C., Jones, S., van de Bulk, W. C. M., Groot, T., Blom, M., Domingues, R., Kasper, G., Allard, V., Jolivot, D., Cellier, P., Laville, P., Henault, C., Bizouard, F., Abdalla, M., Williams, M., Baronti, S., Berretti, F., and Grosz, B.: Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe, Agr. Ecosys. Environ., 121, 135–52, 2007.; Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest Meteorol., 78, 83–105, 1996.; Foken, T., Gödecke, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: Post-field data quality control, in: Handbook of micrometeorology, edited by: Lee, X., Kluwer Academic Publishers, 2004.; IPCC 2006: IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme, Japan, IPCC, 2006.; IPCC 2007: Climate Change (2007): The Physical Science Basis, Technical summary, in: Contribution of Working Group 1 to the Forth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning


Click To View

Additional Books

  • Rainfall Leads to Increased PCo2 in Braz... (by )
  • Open Ocean Dead Zones in the Tropical No... (by )
  • Extreme Events in Gross Primary Producti... (by )
  • Cyanobacterial Calcification in Modern M... (by )
  • Annals of the New York Academy of Scienc... Volume: v. 11 (1898) (by )
  • Museum Bulletin Volume: no. 154 1911 (by )
  • Biological Production in the Bellingshau... (by )
  • The Use of Forest Stand Age Information ... (by )
  • The Influence of Land Cover Change in th... (by )
  • Three-dimensional Modelling of Wave-indu... (by )
  • Biostratigraphic Evidence for Dramatic H... (by )
  • Seasonal Dissolved Inorganic Nitrogen an... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.