World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Reconstruction of Super-resolution Fields of Ocean PCo2 and Air–sea Fluxes of Co2 from Satellite Imagery in the Southeastern Atlantic : Volume 12, Issue 2 (21/01/2015)

By Hernández-carrasco, I.

Click here to view

Book Id: WPLBN0004005115
Format Type: PDF Article :
File Size: Pages 48
Reproduction Date: 2015

Title: Reconstruction of Super-resolution Fields of Ocean PCo2 and Air–sea Fluxes of Co2 from Satellite Imagery in the Southeastern Atlantic : Volume 12, Issue 2 (21/01/2015)  
Author: Hernández-carrasco, I.
Volume: Vol. 12, Issue 2
Language: English
Subject: Science, Biogeosciences, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Paulmier, A., Garçon, V., Sudre, J., Yahia, H., Dadou, I., Dewitte, B.,...Illig, S. (2015). Reconstruction of Super-resolution Fields of Ocean PCo2 and Air–sea Fluxes of Co2 from Satellite Imagery in the Southeastern Atlantic : Volume 12, Issue 2 (21/01/2015). Retrieved from

Description: LEGOS, Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (CNES-CNRS-IRD-UPS), 31401 Toulouse, France. The knowledge of Green House Gases GHGs fluxes at the air–sea interface at high resolution is crucial to accurately quantify the role of the ocean in the absorption and emission of GHGs. In this paper we present a novel method to reconstruct maps of surface ocean partial pressure of CO2, pCO2, and air–sea CO2 fluxes at super resolution (4 km) using Sea Surface Temperature (SST) and Ocean Colour (OC) data at this resolution, and CarbonTracker CO2 fluxes data at low resolution (110 km). Inference of super-resolution of pCO2, and air–sea CO2 fluxes is performed using novel nonlinear signal processing methodologies that prove efficient in the context of oceanography. The theoretical background comes from the Microcanonical Multifractal Formalism which unlocks the geometrical determination of cascading properties of physical intensive variables. As a consequence, a multiresolution analysis performed on the signal of the so-called singularity exponents allows the correct and near optimal cross-scale inference of GHGs fluxes, as the inference suits the geometric realization of the cascade. We apply such a methodology to the study offshore of the Benguela area. The inferred representation of oceanic partial pressure of CO2 improves and enhances the description provided by CarbonTracker, capturing the small scale variability. We examine different combinations of Ocean Colour and Sea Surface Temperature products in order to increase the number of valid points and the quality of the inferred pCO2 field. The methodology is validated using in-situ measurements by means of statistical errors. We obtain that mean absolute and relative errors in the inferred values of pCO2 with respect to in-situ measurements are smaller than for CarbonTracker.

Reconstruction of super-resolution fields of ocean pCO2 and air–sea fluxes of CO2 from satellite imagery in the Southeastern Atlantic

Abraham, E. and Bowen, M.: Chaotic stirring by a mesoscale surface-ocean flow, Chaos, 12, 373–381, 2002.; Arneodo, A., Argoul, F., Bacry, E., Elezgaray, J., and Muzy, J. F.: Ondelettes, Multifractales et Turbulence, Diderot Editeur, Paris, France, 1995.; Abraham, E., Law, C., Boyd, P., Lavender, S., Maldonado, M., and Bowie, A.: Importance of stirring in the development of an iron-fertilized phytoplankton bloom, Nature, 407, 727–730, 2000.; Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Olsen, A., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K. M., Schuster, U., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W.-J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., de Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, M., Huang, W.-J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Manke, A. B., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Newberger, T., Omar, A. M., Ono, T., Park, G.-H., Paterson, K., Pierrot, D., Ríos, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Sieger, R., Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A. J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Wanninkhof, R., and Watson, A. J.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2), Earth Syst. Sci. Data, 6, 69–90, doi:10.5194/essd-6-69-2014, 2014.; Berti, S. and Lapeyre, G.: Lagrangian reconstructions of temperature and velocity in a model of surface ocean turbulence, Ocean Model., 76, 59–71, 2014.; Bouchet, F. and Venaille, A.: Statistical mechanics of two-dimensional and geophysical flows, Phys. Rep., 515, 227–295, 2012.; Delcroix, T., Alory, G., Cravatte, S., Correge, T., and McPhaden, M.: A gridded sea surface salinity dataset for the tropical Pacific with sample applications (1950–2008), Deep-Sea Res. Pt. I, 58, 38–48, 2011.; Dickey, T.: Emerging ocean observations for interdisciplinary data assimilation systems, J. Marine Syst., 40–41, 5–48, 2003.; Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, 2012.; IOCCP: Surface Ocean CO2 Variability and Vulnerabilities Workshop, Rep. 7, U.N. Educ., Sci., and Cult. Organ., Paris, 5, 2007.; Franco, A. C., Hernández-Ayón, J. M., Beier, E., Garçon, V., Maske, H., Paulmier, A., Färber-Lorda, J., Castro, R., and Sosa-\'Avalos, R.: Air–sea CO2 fluxes above the stratified oxygen minimum zone in the coastal region off Mexico, J. Geophys. Res.-Oceans, 119, 2923–2937, 2014.; Frisch, U.: Turbulence: T}he Legacy of A.{N. Kolmogorov, Cambrige University Press, New York, USA, 1995.; Garbe, C. and Vihharev, J.: Modeling of atmospheric transport of chemical species in the Polar regions, in: IEEE International Geoscience and Remote Sensing Symposium, IEEE, Munich, Germany, 6047–6050, 22–27 July, 2012.; Garbe, C., Handler, R. A., and Jahne, B.: Transport at the Air–Sea Interface – Measurements, Models and Parameterizations, Springer-Verlag, Berlin, ISBN: 978-3-540-36904-2, 2007.; Garbe, C., Rutgersson, A., Boutin, J., Delille, B., Fairall, C., Gruber, N., Hare, J., Ho, D., Johnson, M., de Leeuw, G., Nightingale, P., Pettersson, H., Piskozub, J., Sahlee, E., Tsai, W., Ward, B., Woolf, D., and Zappa, C.: Transfer across the air–sea interface, in: Ocean–Atmosphere Interactions of Gases and Particles, edited by: Liss, P. and Johnson, M., Springer-Verlag, Norwich, UK, 55–112, 2014.; González-Dávila, M


Click To View

Additional Books

  • Causes of Variation in Soil Carbon Predi... (by )
  • Leaf Level Emissions of Volatile Organic... (by )
  • Effects of Ocean Acidification on Calcif... (by )
  • Water Use Strategies of a Young Eucalypt... (by )
  • The Significance of Nitrous Oxide Emissi... (by )
  • Seasonal Variation in Ecosystem Paramete... (by )
  • Simulating the Growth and Distribution o... (by )
  • Impact of Change in Climate and Policy f... (by )
  • Challenges and Opportunities to Reduce U... (by )
  • Short-term Natural Δ13C Variations in Po... (by )
  • Effects of N and P Fertilization on the ... (by )
  • Global Assessment of Vegetation Index an... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.