World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Sensitivity of the Marine Carbonate Cycle to Atmospheric Co2 : Volume 7, Issue 5 (20/09/2010)

By Gangstø, R.

Click here to view

Book Id: WPLBN0004005598
Format Type: PDF Article :
File Size: Pages 62
Reproduction Date: 2015

Title: Sensitivity of the Marine Carbonate Cycle to Atmospheric Co2 : Volume 7, Issue 5 (20/09/2010)  
Author: Gangstø, R.
Volume: Vol. 7, Issue 5
Language: English
Subject: Science, Biogeosciences, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Gangstø, R., Gehlen, M., & Joos, F. (2010). Sensitivity of the Marine Carbonate Cycle to Atmospheric Co2 : Volume 7, Issue 5 (20/09/2010). Retrieved from http://www.ebooklibrary.org/


Description
Description: Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. By the year 2500, the ratio of open water CaCO3 dissolution to production stabilizes at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100. Despite the wide range of parameterizations, model versions and scenarios included in our study, the changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of 1–11 ppm by the year 2100.

Summary
Sensitivity of the marine carbonate cycle to atmospheric CO2

Excerpt
Accornero, A., Manno, C., Esposito, F., and Gambi, M. C.: The vertical flux of particulate matter in the polynya of Terra Nova Bay, Part II, Biological components, Antarct. Sci., 15(2), 175–188, 2003.; Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625, 2005.; Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2001.; Aumont, O., Maier-Reimer, E., Blain, S., and Monfray, P.: An ecosystem model of the global ocean including Fe, Si, P colimitations, Global Biogeochem. Cy., 17(2), GB1060, doi:10.1029/2001GB001745, 2003.; Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, doi:10.1029/2005GB002591, 2006.; Balch, W., Drapeau, D., Bowler, B., and Booth, E.: Prediction of pelagic calcification rates using satellite measurements, Deep-Sea Res. Pt. II, 54(5–7), 478–495, 2007.; Barker, S., Higgins, J. A., and Elderfield, H.: The future of the carbon cycle: review, calcification response, ballast and feedback on atmospheric CO2, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 361, 1977–1999.; Berelson, W. M., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and Lee, K.: Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget, Global Biogeochem. Cy., 21, GB1024, doi:10.1029/2006GB002803, 2007.; Berger, W. H.: Deep-Sea carbonate: Pteropod distribution and the aragonite compensation depth, Deep-Sea Res., 25, 447–452, 1978.; Berner, R. A.: Sedimentation and Dissolution of Pteropods in the Ocean, in: The Fate of Fossil Fuel CO2 in the Oceans, edited by: Andersen, N. R. and Malahoff, A., Plenum Press, New York, 243–260, 1977.; Berner, R. A. and Honjo, S.: Pelagic sedimentation of aragonite: its geochemical significance, Science, 211, 940–942, 1981.; Bijma, J., Spero, H. J., and Lea, D. W.: Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results), in :Use of Proxies in Paleoceanography: Examples From the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer, New York, 489–512, 1999.; Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.: Response of diatoms distribution to global warming and potential implications: A global model study, Geophys. Res. Lett., 32(19), L19606, doi:10.1029/2005GL019606, 2005.; Bryan, F.: High-latitude salinity effects and interhemispheric thermohaline circulations, Nature, 323, 301–304, 1986.; Buitenhuis, E., Le Quéré, C., Aumont, O., Beaugrand, G., Bunker, A., Hirst, A., Ikeda, T., O'Brien, T., Piontkovski, S., and Straile, D.: Biogeochemical fluxes through mesozooplankton, Global Biogeochem. Cy., 20, GB2003, doi:10.1029/2005GB002511, 2006.; Casareto, B. E., Niraula, M. O., Fujimura, H., and Suzuki, Y.: Effects of carbon dioxide on the coccolithophorid Pleurochrysis carterae in incubation experiments, Aquat. Biol., 7, 59–70, 2009.; Collier, R., Dymond, J., Honjo, S., Manganini, S., Francois, R., and Dunbar, R.: The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998, Deep-Sea Res. Py. II, 47, 3491–3520, 2000.; Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.: Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina), Biogeosciences, 6, 1877–1882, doi:10.5194/bg-6-1877-2009, 2009.; Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bel

 

Click To View

Additional Books


  • Predicting Long-term Denitrification Cap... (by )
  • Inverse Estimation of Source Parameters ... (by )
  • Contributions of Dynamic Environmental S... (by )
  • Recolonization of the Intertidal and Sha... (by )
  • Laboratory Measurements of Nitric Oxide ... (by )
  • Effects of Climate Warming and Declining... (by )
  • Sea-air Co2 Fluxes in the Southern Ocean... (by )
  • Technical Note: Enhanced Reactivity of N... (by )
  • Biogeochemical Plant Site Conditions in ... (by )
  • Redox Sensitive Elements in Foraminifera... (by )
  • Chapter G2 Carbon Emissions from Land Us... (by )
  • Degradation State of Organic Matter in S... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.