World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Combined Effects of Inorganic Carbon and Light on Phaeocystis Globosa Scherffel (Prymnesiophyceae) : Volume 8, Issue 6 (21/12/2011)

By Hoogstraten, A.

Click here to view

Book Id: WPLBN0004005754
Format Type: PDF Article :
File Size: Pages 28
Reproduction Date: 2015

Title: Combined Effects of Inorganic Carbon and Light on Phaeocystis Globosa Scherffel (Prymnesiophyceae) : Volume 8, Issue 6 (21/12/2011)  
Author: Hoogstraten, A.
Volume: Vol. 8, Issue 6
Language: English
Subject: Science, Biogeosciences, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Timmermans, K. R., W. De Baa, H. J., Peters, M., & Hoogstraten, A. (2011). Combined Effects of Inorganic Carbon and Light on Phaeocystis Globosa Scherffel (Prymnesiophyceae) : Volume 8, Issue 6 (21/12/2011). Retrieved from

Description: Royal Netherlands Institute for Sea Research (NIOZ), Department of Biological Oceanography, P.O. Box 59, 1790 AB Den Burg, The Netherlands. Phaeocystis globosa (Prymnesiophyceae) is a globally dominating phytoplankton species. It plays an important role in both the global sulfur and carbon cycles, by the production of dimethylsulfide (DMS) and the drawdown of inorganic carbon. Phaeocystis globosa has a polymorphic life cycle and is considered to be a harmful algal bloom (HAB) forming species. All these aspects make this an interesting species to study the effects of increasing carbon dioxide (CO2) concentrations, due to anthropogenic carbon emissions. Here, the combined effects of three different dissolved carbon dioxide concentrations (CO2(aq)) (low: 4 μmol kg−1, intermediate: 6–10 μmol kg−1 and high CO2(aq): 21–24 μmol kg−1) and two different light intensities (low light, suboptimal: 80 μmol photons m−2s–1 and high light, light saturated: 240 μmol photons m−2s−1) are reported. The experiments demonstrated that the specific growth rate of P. globosa in the high light cultures decreased with increasing CO2(aq) from 1.4 to 1.1 d−1 in the low and high CO2 cultures respectively. Concurrently, the photosynthetic efficiency increased with increasing CO2(aq) from 0.56 to 0.66. The different light conditions affected photosynthetic efficiency and chlorophyll-a concentrations, both of which were lower in the high light cultures as compared to the low light cultures. These results suggest that in the future, inorganic carbon enriched oceans, P. globosa will become less competitive and feedback mechanisms to global change may decrease in strength.

Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae)

Brewer, P. G. and Goldman, J. C.: Alkalinity Changes Generated by Phytoplankton Growth, Limnol. Oceanogr., 21, 108–117, 1976.; Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.; Brussaard, C. P. D., Kuipers, B., and Veldhuis, M. J. W.: A mesocosm study of Phaeocystis globosa population dynamics Part 1: Regulatory role of viruses in bloom, Harmful Algae, 4, 859–874, 2005.; Chen, S. and Gao, K. S.: Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae), Hydrobiologia, 675, 105–117, 2011.; Chen, Y.-Q., Wang, N., Zhang, P., and Que, L.-H.: Molecular evidence identifies bloom forming Phaeocystis (Prymnesiophytha) from coastal waters of southeast China as Phaeocystis globosa., Biochem. Syst. Ecol., 30, 15–22, 2002.; Clarke, A. D., Davis, D., Kapustin, V. N., Eisele, F., Chen, G., Paluch, I., Lenschow, D., Bandy, A. R., Thornton, D., Moore, K., Mauldin, L., Tanner, D., Litchy, M., Carroll, M. A., Collins, J., and Albercook, G.: Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources, Science, 282, 89–92, 1998.; Dickson, A. G.: Standard potential of the reaction - AgCl$_{(\rm S)} + ^{1}$/2H$_{2(\rm G)}$ = Ag$_{(\rm S)}$ + HCl$_{(\rm aq)}$ and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 K to 318.15 K, J. Chem. Thermodyn., 22, 113–127, 1990a.; Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 K to 318.15 K, Deep-Sea Res., 37, 755–766, 1990b.; Dickson, A. G. and Goyet, C.: Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, edited by: Dickson, A. G. and Goyet, C., 187 pp., 1994.; Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.; Lu, D. and Huang, W.: Phaeocystis bloom in southeast China coastal waters 1997, Harmful Algae News, 19, 9, 1999.; Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to the best practices for ocean CO2 measurements, Pices special publication 3, North Pacific Marine Organization, Sidney, Canada, 191 pp., 2007; Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. D., Rochelle-Newall, E., Schneider, U., Terbrueggen, A., and Riebesell, U.: Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments, Limnol. Oceanogr., 50, 493–507, 2005.; Field, A.: Discovering Statistics using SPSS, SAGE Publications Ltd, London, 816 pp., 2007.; Goldman, J. C. and Brewer, P. G.: Effect of Nitrogen-Source and Growth-Rate on Phytoplankton-Mediated Changes in Alkalinity, Limnol. Oceanogr., 25, 352–357, 1980.; Grasshoff, K., Ehrhardt, M., and Kremling, K.: Methods of seawater analysis, Wiley VCH, Weinheim, 447 pp., 1983.; Holm-Hansen, O., Lorenzen, C. J., Homes, R. W., and Strickland, J. D. H.: Fluorometric determination of chlorophyll, Journal de Conseil pour l'Exploration de la Mer, 30, 3–15, 1965.; Hoogstraten, A., Timmermans, K. R., and de Baar, H. J. W.: Morphological and physiological effects in Proboscia alata (Bacillariophyceae) grown under different light and CO2 conditions of the modern Southern Ocean, submitted, J. Phycol.; Hoogstraten, A., Zemmelink, H., Timmermans, K. R., Bontes, B., and de Baar, H. J. W.: Design and performance evaluation of laboratory scale carbon dioxide perturbation experiments for Southern Ocean di


Click To View

Additional Books

  • Contribution of Riverine Nutrients to th... (by )
  • The Combined Effects of Nitrification In... (by )
  • The Relative Contributions of Forest Gro... (by )
  • Trace Metal Distribution in Pristine Per... (by )
  • Gradients in Intact Polar Diacylglycerol... (by )
  • Simulating the Optical Properties of Phy... (by )
  • The Accent-vocbas Field Campaign on Bios... (by )
  • Methane and Nitrous Oxide Exchange Over ... (by )
  • Using Satellite-derived Backscattering C... (by )
  • Field-based Observations of Regional-sca... (by )
  • The Role of Photo- and Thermal Degradati... (by )
  • Terrestrial Ecosystems Response to Futur... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.