World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Last Deglaciation: Timing the Bipolar Seesaw : Volume 7, Issue 2 (24/06/2011)

By Pedro, J. B.

Click here to view

Book Id: WPLBN0004006305
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: The Last Deglaciation: Timing the Bipolar Seesaw : Volume 7, Issue 2 (24/06/2011)  
Author: Pedro, J. B.
Volume: Vol. 7, Issue 2
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Morgan, V. I., Pedro, J. B., Moy, A. D., Rasmussen, S. O., Van Ommen, T. D., Chappellaz, J.,...Delmotte, M. (2011). The Last Deglaciation: Timing the Bipolar Seesaw : Volume 7, Issue 2 (24/06/2011). Retrieved from http://www.ebooklibrary.org/


Description
Description: Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia. Precise information on the relative timing of north-south climate variations is a key to resolving questions concerning the mechanisms that force and couple climate changes between the hemispheres. We present a new composite record made from five well-resolved Antarctic ice core records that robustly represents the timing of regional Antarctic climate change during the last deglaciation. Using fast variations in global methane gas concentrations as time markers, the Antarctic composite is directly compared to Greenland ice core records, allowing a detailed mapping of the inter-hemispheric sequence of climate changes. Consistent with prior studies the synchronized records show that warming (and cooling) trends in Antarctica closely match cold (and warm) periods in Greenland on millennial timescales. For the first time, we also identify a sub-millennial component to the inter-hemispheric coupling. Within the Antarctic Cold Reversal the strongest Antarctic cooling occurs during the pronounced northern warmth of the Bølling. Warming then resumes in Antarctica, potentially as early as the Intra-Allerød Cold Period, but with dating uncertainty that could place it as late as the onset of the Younger Dryas stadial. There is little-to-no time lag between climate transitions in Greenland and opposing changes in Antarctica. Our results lend support to fast acting inter-hemispheric coupling mechanisms, including recently proposed bipolar atmospheric teleconnections and/or rapid bipolar ocean teleconnections.

Summary
The last deglaciation: timing the bipolar seesaw

Excerpt
Andersen, K. K., Ditlevsen, P. D., Rasmussen, S. O., Clausen, H. B., Vinther, B. M., Johnsen, S. J., and Steffensen, J. P.: Retrieving a common accumulation record from Greenland ice cores for the past 1800 years, J. Geophys. Res., 111, D15106, doi:10.1029/2005JD006765, 2006a.; Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M., R�othlisberger, R., Ruth, U., Siggaard-Andersen, M., Peder Steffensen, J., Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland Ice Core Chronology 2005, 15 42 ka. Part 1: constructing the time scale, Quaternary Sci. Rev., 25, 3246–3257, doi:10.1016/j.quascirev.2006.08.002, 2006b.; Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2, Science, 323, 1143–1448, 2009.; Barker, S., Knorr, G., Vautravers, M. J., Diz, P., and Skinner, L. C.: Extreme deepening of the Atlantic circulation during deglaciation, Nat. Geosci., 3, 567–571, 2010.; Barnola, J. M., Pimienta, P., Raynaud, D., and Korotkevich, Y. S.: CO2-climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating, Tellus Ser. B., 43, 83–90, 1991.; Bianchi, C. and Gersonde, R.: Climate evolution at the last deglaciation: the role of the Southern Ocean, Earth Planet. Sci. Lett., 228, 407–424, 2004.; Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109–112, doi:10.1126/science.291.5501.109, 2001.; Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., Hammer, C. U., and Johnsen, S. J.: Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739–743 1998.; Broecker, W.: Palaeocean circulation during the last deglaciation: A bipolar seesaw?, Paleoceanography, 13, 119–121, 1998.; Brook, E. J., White, J. W. C., Schilla, A. S. M., Bender, M. L., Barnett, B. Severinghaus, J. P., Taylor, K. C., Alley, R. B., and Steig, E. J.: Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period, Quat. Sci. Rev., 24, 1333–1343, 2005.; Buiron, D., Chappellaz, J., Stenni, B., Frezzotti, M., Baumgartner, M., Capron, E., Landais, A., Lemieux-Dudon, B., Masson-Delmotte, V., Montagnat, M., Parrenin, F., and Schilt, A.: TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica, Clim. Past, 7, 1–16, doi:10.5194/cp-7-1-2011, 2011.; Chaudhuri, P. and Marron, J. S.: SiZer for Exploration of Structures in Curves, J. Am. Stat. Assoc., 94, 807–823, (A SiZer script for MatLab can be obtained from http://www.unc.edu/ marron/marron_software.html), 1999.; Delmotte, M., Raynaud, D., Morgan, V., and Jouzel, J.: Climatic and glaciological information inferred from air content measurements of a Law Dome (East Antarctica) ice core, J. Glaciol., 45, 255–263, 1999.; Denton, G. H., Anderson, R. F., Toggweiler, J. R., Edwards, R. L., Schaefer, J. M., and Putnam, A. E.: The last glacial termination, Science, 328, 1652–1656, 2010.; EPICA community members: One-to-one coupling of glacial climate variability in Greenland and Antarctica, Nature, 444, 195–198, 2006.; Ganopolski, A. and Rahmstorf, S.: Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153–158, 2001.; Goujon, C., Barnola, J.-M., and Ritz, C.: Modeling the densification of polar firn including heat

 

Click To View

Additional Books


  • Modelled Glacier Equilibrium Line Altitu... (by )
  • Reconstruction of Atlantic Water Variabi... (by )
  • A Biomarker Record of Lake El'Gygytgyn, ... (by )
  • The Paleocene–eocene Thermal Maximum at ... (by )
  • Investigating Uncertainties in Global Gr... (by )
  • What Could Have Caused Pre-industrial Bi... (by )
  • What Controls the Isotopic Composition o... (by )
  • Evolution of the Large-scale Atmospheric... (by )
  • Winter Temperature Variations Over Middl... (by )
  • Causes of Greenland Temperature Variabil... (by )
  • The Edc3 Chronology for the Epica Dome C... (by )
  • Deep Ocean Ventilation, Carbon Isotopes,... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.