World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Quantifying the Ocean's Role in Glacial Co2 Reductions : Volume 8, Issue 2 (16/03/2012)

By Chikamoto, M. O.

Click here to view

Book Id: WPLBN0004006432
Format Type: PDF Article :
File Size: Pages 19
Reproduction Date: 2015

Title: Quantifying the Ocean's Role in Glacial Co2 Reductions : Volume 8, Issue 2 (16/03/2012)  
Author: Chikamoto, M. O.
Volume: Vol. 8, Issue 2
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Ohgaito, R., Oka, A., Abe-Ouchi, A., Chikamoto, M. O., & Timmermann, A. (2012). Quantifying the Ocean's Role in Glacial Co2 Reductions : Volume 8, Issue 2 (16/03/2012). Retrieved from http://www.ebooklibrary.org/


Description
Description: Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan. A series of Last Glacial Maximum (LGM) marine carbon cycle sensitivity experiments is conducted to test the effect of different physical processes, as simulated by two atmosphere-ocean general circulation model (AOGCM) experiments, on atmospheric pCO2. One AOGCM solution exhibits an increase in North Atlantic Deep Water (NADW) formation under glacial conditions, whereas the other mimics an increase in Antarctic Bottom Water (AABW) associated with a weaker NADW. None of these sensitivity experiments reproduces the observed magnitude of glacial/interglacial pCO2 changes. However, to explain the reconstructed vertical gradient of dissolved inorganic carbon (DIC) of 40 mmol m−3 a marked enhancement in AABW formation is required. Furthermore, for the enhanced AABW sensitivity experiment the simulated stable carbon isotope ratio (Δ13C) decreases by 0.4‰ at intermediate depths in the South Atlantic in accordance with sedimentary evidence. The shift of deep and bottom water formation sites from the North Atlantic to the Southern Ocean increases the total preformed nutrient inventory, so that the lowered efficiency of Southern Ocean nutrient utilization in turn increases atmospheric pCO2. This change eventually offsets the effect of an increased abyssal carbon pool due to stronger AABW formation. The effects of interhemispheric glacial sea-ice changes on atmospheric pCO2 oppose each other. Whereas, extended sea-ice coverage in the Southern Hemisphere reduces the air-sea gas exchange of CO2 in agreement with previous theoretical considerations, glacial advances of sea-ice in the Northern Hemisphere lead to a weakening of the oceanic carbon uptake through the physical pump. Due to enhanced gas solubility associated with lower sea surface temperature, both glacial experiments generate a reduction of atmospheric pCO2 by about 20–23 ppmv. The sensitivity experiments presented here demonstrate the presence of compensating effects of different physical processes in the ocean on glacial CO2 and the difficulty of finding a simple explanation of the glacial CO2 problem by invoking ocean dynamical changes.

Summary
Quantifying the ocean's role in glacial CO2 reductions

Excerpt
Adkins, J. F., Mcintyre, K., and Schrag, D. P.: The salinity, temperature, and δ18{O} of the glacial deep ocean, Science, 298, 1769–1773, 2002.; Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., and Burckle, L. H.: Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 1443–1448, 2009.; Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric p{CO2} cycles?, Reviews of Geophysics, 38, 159–189, 2000.; Archer, D., Martin, P. A., Milovich, J., Brovkin, V., Plattner, G.-K., and Ashendel, C.: Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric p{CO2}, Paleoceanography, 18, 1012, doi:10.1029/2002PA000760, 2003.; Bacastow, R. and Maier-Reimer, E.: Ocean-circulation model of the carbon cycle, Clim. Dynam., 4, 95–125, 1990.; Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, 1997.; Bacastow, R. B.: The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2, Global Biogeochem. Cy., 10, 319–333, 1996.; Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean productivity, Nature, 444, 752–755, 2006.; Berger, A.: Long-term variations of caloric insolation resulting from the earth's orbital elements, Quaternary Res., 9, 139–167, 1978.; Bird, M. I., Lloyd, J., and Farquhar, G. D.: Terrestrial carbon storage at the LGM, Nature, 371, 566, doi:10.1038/371566a0, 1994.; Bopp, L., Kohfeld, K. E., and Le Quéré, C.: Dust impact on marine biota and atmospheric CO2 during glacial periods, Paleoceanography, 18, 1046, doi:10.1029/2002PA000810, 2003.; Bouttes, N., Roche, D. M., and Paillard, D.: Impact of strong deep ocean stratification on the glacial carbon cycle, Paleoceanography, 24, PA3203, doi:10.1029/2008PA001707, 2009.; Bouttes, N., Paillard, D., and Roche, D. M.: Impact of brine-induced stratification on the glacial carbon cycle, Clim. Past, 6, 575–589, doi:10.5194/cp-6-575-2010, 2010.; Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., La\^{i}né, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S. L., Yu, Y., and Zhao, Y.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 1: experiments and large-scale features, Clim. Past, 3, 261–277, doi:10.5194/cp-3-261-2007, 2007.; Broecker, W. S., Lynch-Stieglitz, J., Archer, D., Hofmann, M., Maire-Reimer, E., Marchal, O., Stocker, T., and Gruber, N.: How strong is the Harvardton-Bear constraint?, Global Biogeochem. Cy., 13, 817–820, 1999.; Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography, 22, PA4202,

 

Click To View

Additional Books


  • Glacial-interglacial Vegetation Dynamics... (by )
  • Multiproxy Records of Climate Variabilit... (by )
  • Contrasting Patterns of Climatic Changes... (by )
  • A 350 Ka Record of Climate Change from L... (by )
  • Terrestrial Biosphere Changes Over the L... (by )
  • Orbital Changes, Variation in Solar Acti... (by )
  • Coupled Regional Climate–ice-sheet Simul... (by )
  • Predicting Pleistocene Climate from Vege... (by )
  • Application of Sediment Core Modelling t... (by )
  • A Probabilistic Model of Chronological E... (by )
  • The Impact of Early Holocene Arctic Shel... (by )
  • Comparing Transient, Accelerated, and Eq... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.