World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Can We Determine What Controls the Spatio-temporal Distribution of D-excess and 17O-excess in Precipitation Using the Lmdz General Circulation Model? : Volume 9, Issue 5 (16/09/2013)

By Risi, C.

Click here to view

Book Id: WPLBN0004006545
Format Type: PDF Article :
File Size: Pages 21
Reproduction Date: 2015

Title: Can We Determine What Controls the Spatio-temporal Distribution of D-excess and 17O-excess in Precipitation Using the Lmdz General Circulation Model? : Volume 9, Issue 5 (16/09/2013)  
Author: Risi, C.
Volume: Vol. 9, Issue 5
Language: English
Subject: Science, Climate, Past
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Winkler, R., Vimeux, F., Risi, C., & Landais, A. (2013). Can We Determine What Controls the Spatio-temporal Distribution of D-excess and 17O-excess in Precipitation Using the Lmdz General Circulation Model? : Volume 9, Issue 5 (16/09/2013). Retrieved from

Description: Laboratoire de Météorologie Dynamique UMR8539, IPSL/CNRS/UPMC, 4, place Jussieu, 75252 Paris Cedex 05, France. Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM) LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD) and during the last glacial maximum (LGM). The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity), Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O-excess by LMDZ suggest that general circulation models are not yet the perfect tool to quantify with confidence all processes controlling 17O-excess.

Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

Lee, J.-E., Fung, I., DePaolo, D. J., and Otto-Bliesner, B.: Water isotopes during the Last Glacial Maximum: new general circulation model calculations, J. Geophys. Res., 113, D19109, doi:10.1029/2008JD009859, 2008.; Lee, J., Feng, X., Faiia, A. M., Posmentier, E. S., Kirchner, J. W., Osterhuber, R., and Taylor, S.: (2010). Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical Geology, 270, 126–134, doi:10.1016/j.chemgeo.2009.11.011, 2010.; Letreut, H. and Li, Z.-X.: Sensitivity of an atmospheric general circulation model to prescribed sst changes: feedback effects associated with the simulation of cloud optical properties. Cli, 5, 175–187, 1991.; Lorius, C., Merlivat, L., Jouzel, J., and Pourchet, M.: A 30000 yr isotope climatic record from Antarctic ice, Nature, 280, 644–648, 1979.; Luz, B. and Barkan, E.: Variations of 17O/16O and 18O/16O in meteoric waters, Geochim. Cosmochim. Ac., 74, 6276–6286, 2010.; Luz, B., Barkan, E., Yam, R., and Shemesh, A.: Fractionation of oxygen and hydrogen isotopes in evaporating water, Geochim. Cosmochim. Ac., 73, 6697–6703, 2009.; Majoube, M.: Fractionnement en 18O entre la glace et la vapeur d'eau, J. Chim. Phys., 68, 625–636, 1971a.; Majoube, M.: Fractionnement en Oxygène 18 et en Deutérium entre l'eau et sa vapeur, J. Chim. Phys., 10, 1423–1436, 1971b.; MARGO project members: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nat. Geosci., 2, 127–132, 2008.; Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cdule, P., Caubel, A., Denvil, S., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Foujols, M.-A., Fichefer, T., Friedlingstein, P., Grandpeix, J.-Y., Hourdin, F., Krinner, G., Lévy, C., Madec, G., Musat, I., de Noblet, N., Polcher, J., and Tanlandier, C.: The new IPSL climate system model: IPSL-CM4, Technical report, IPSL, France, 2005.; Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S. J., White, J. W. C., Werner, M., Sveinbjornsdottir, A., and Fuhrer, K.: GRIP Deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin, Science, 309, 118–121, 2005.; Masson-Delmotte, V., Hou, S., Ekaykin, A., Jouzel, J., Aristarain, A., Bernardo, R. T., Bromwhich, D., Cattani, O., Delmotte, M., Falourd, S., Frezzotti, M., Gallée, H., Genoni, L., Isaksson, E., Landais, A., Helsen, M., Hoffmann, G., Lopez, J., Morgan, V., Motoyama, H., Noone, D., Oerter, H., Petit, J., Royer, A., Uemura, R., Schmidt, G., Schlosser, E., Simes, J., Steig, E., Stenni, B., Stievenard, M., van den Broeke, M., van de Wal, R., van den Berg, W.-J., Vimeux, F., and White, J.: A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling, J. Climate, 21, 3359–3387, 2008.; Masson-Delmotte, V., Braconnot, P., Hoffmann, G., Jouzel, J., Kageyama, M., Landais, A., Lejeune, Q., Risi, C., Sime, L., Sjolte, J., Swingedouw, D., and Vinther, B.: Sensitivity of interglacial Greenland temperature and δ18O: ice core data, orbital and increased CO2 climate simulations, Clim. Past, 7, 1041–1059, doi:10.5194/cp-7-1041-2011, 2011.; Meehl, G. A., Covey, K., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K.: The WCRP CMIP3 multimodel dataset: a new era in climate change research, B. Am. Meteor. Soc., 7, 1383–1394, 2007.; Merlivat, L. and Jouzel, J.: Global climatic interpretation of the Deuterium-Oxygen 18 relationship for precipitation, J. Geophys. Res., 84, 5029–5332, 1979.; Merlivat, L. and Nief, G.: Fractionnement isot


Click To View

Additional Books

  • A 500-year Seasonally Resolved Δ18O and ... (by )
  • Late Holocene Vegetation Changes in Rela... (by )
  • Transient Simulations of the Carbon and ... (by )
  • Greenland Accumulation and Its Connectio... (by )
  • Coupled Simulations of the Mid-holocene ... (by )
  • Exploring the Controls on Element Ratios... (by )
  • Stalagmite Water Content as a Proxy for ... (by )
  • Tree Ring Effects and Ice Core Acidities... (by )
  • Upper Ocean Climate of the Eastern Medit... (by )
  • Eurasian Arctic Climate Over the Past Mi... (by )
  • Simulating Sub-milankovitch Climate Vari... (by )
  • Glacial-interglacial Vegetation Dynamics... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.