World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Inclusion of Vegetation in the Town Energy Balance Model for Modeling Urban Green Areas : Volume 5, Issue 2 (25/05/2012)

By Lemonsu, A.

Click here to view

Book Id: WPLBN0004009346
Format Type: PDF Article :
File Size: Pages 46
Reproduction Date: 2015

Title: Inclusion of Vegetation in the Town Energy Balance Model for Modeling Urban Green Areas : Volume 5, Issue 2 (25/05/2012)  
Author: Lemonsu, A.
Volume: Vol. 5, Issue 2
Language: English
Subject: Science, Geoscientific, Model
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Masson, V., Erell, E., Shashua-Bar, L., Pearlmutter, D., & Lemonsu, A. (2012). Inclusion of Vegetation in the Town Energy Balance Model for Modeling Urban Green Areas : Volume 5, Issue 2 (25/05/2012). Retrieved from http://www.ebooklibrary.org/


Description
Description: Météo-France/CNRS, URA1357, Groupe d'étude de l'atmosphère météorologique, Toulouse, France. Cities impact both local climate, through urban heat islands, and global climate, because they are an area of heavy greenhouse gas release into the atmosphere due to heating, air conditioning and traffic. Including more vegetation into cities is a planning strategy having possible positive impacts for both concerns. Improving vegetation representation into urban models will allow to address more accurately these questions. This paper presents an improvement of the TEB urban canopy model. Vegetation is directly included inside the canyon, allowing shadowing of grass by buildings, better representation of urban canopy form, and, a priori, a more accurate simulation of canyon air microclimate. The development is performed so that any vegetation model can be used to represent the vegetation part. Here the ISBA model is used. The model results are compared to microclimatic and evaporation measurements performed in small courtyards in a very arid region of Israel. Two experimental landscaping strategies – bare soil or irrigated grass in the courtyard – are observed and simulated. The new version of the model with integrated vegetation performs better than if vegetation is treated outside the canyon. Surface temperatures are closer to the observations, especially at night when radiative trapping is important. The integrated vegetation version simulates a more humid air inside the canyon. The microclimatic quantities are better simulated with this new version. This opens opportunities to study with better accuracy the urban microclimate, down to the micro (or canyon) scale.

Summary
Inclusion of vegetation in the Town Energy Balance model for modeling urban green areas

Excerpt
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteorol. Soc., 126, 1–30, 2000.; Dupont, S. and Mestayer, P.: Parameterization of the urban energy budget with the Submesoscale Soil Model, J. Appl. Meteorol. Climatol., 45, 1744–1765, 2006.; Essery, R., Best, M., Betts, R., Cox, P., and Taylor, C.: Explicit representation of subgrid heterogeneity in a GCM land surface scheme, J. Hydrol., 4, 530–543, 2003.; Grimmond, C., Blackett, M., Best, M., Barlow, J., Baik, J.-J., Belcher, S., Bohnenstengel, S., Calmet, I., Chen, F., Dandou, A., Fortuniak, K., Gouvea, M., Hamdi, R., Hendry, M., Kondo, H., Krayenhoff, S., Lee, S.-H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Pigeon, G., Porson, A., Salamanca, F., Shashua-Bar, L., Steeneveld, G.-J., Tombrou, M., Voogt, J., and Zhang, N.: The international urban energy balance models comparison project: First results from Phase 1, J. Appl. Meteorol. Climatol., 49, 1268–1292, 2010.; Grimmond, C., Blackett, M., Best, M., Barlow, J., Baik, J.-J., Belcher, S., Bohnenstengel, S., Calmet, I., Dandou, F. C., Fortuniak, K., Gouvea, M., Hamdi, R., Hendry, M., Kondo, H., Krayenhoff, S., Lee, S.-H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Pigeon, G., Porson, A., Salamanca, F., Shashua-Bar, L., Steeneveld, G.-J., Tombrou, M., Voogt, J., and Zhang, N.: The international urban energy balance models comparison project: Initial results from Phase 2, J. Appl. Meteorol. Climatol., 31, 244–272, 2011.; Hamdi, R. and Masson, V.: Inclusion of a drag approach in the town energy balance (TEB) scheme: offline 1-d validation in a street canyon, J. Appl. Meteorol. Climatol., 47, 2627–2644, 2008.; Kanda, M., Kawai, T., Kanega, M., Moriwaki, R., Narita, K., and Hagishima, A.: A simple energy balance model for regular building arrays, Bound.-Lay. Meteorol., 116, 423–443, 2005.; Kondo, H., Genchi, Y., Kikegawa, Y., Ohashi, Y., Yoshikado, H., and Komiyama, H.: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: structure of the urban canopy model and its basic performance, Bound.-Lay. Meteorol., 116, 395–421, 2005.; Krayenhoff, E. and Voogt, J.: A microscale threedimensional urban energy balance model for studying surface temperatures, Bound.-Lay. Meteorol., 123, 433–461, 2007.; Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, doi:10.1007/s00585-997-0090-6, 1998.; Lee, S.-H. and Park, S.-U.: A vegetated urban canopy model for meteorological and environmental modelling, Bound.-Lay. Meteorol., 126, 73–102, 2008.; Lemonsu, A., Grimmond, C., and Masson, V.: Modeling the surface energy balance of the core of an old Mediterranean city: Marseille, J. Appl. Meteorol., 43, 312–327, 2004.; Lemonsu, A., Kounkou-Arnaud, R., Desplat, J., Salagnac, J.-L., and Masson, V.: Evolution of the Parisian urban climate under a global changing climate, Climatic Change, in press, 2012.; Martilli, A., Clappier, A., and Rotach, M.: An urban surface exchange parameterization for mesoscale models, Bound.-Lay. Meteorol., 104, 261–304, 2002.; Masson, V.: A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models, Bound.-Lay. Meteorol., 94, 357–397, 2000.; Masson, V. and Seity, Y.: Including atmospheric layers in vegetation and urban offline surface schemes, J. Appl. Meteorol. and Climatol., 48, 1377–1397, 2009.; Masson, V., Grimmond, C., and Oke, T.: Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities, J. Appl. Meteorol., 41, 1011–1026, 2002.; Noilhan

 

Click To View

Additional Books


  • Application of a Global Nonhydrostatic M... (by )
  • Accuracy of the Zeroth and Second Order ... (by )
  • Evaluation of the High Resolution Wrf-ch... (by )
  • A Lagrangian Model of Air-mass Photochem... (by )
  • Development of the Geos-5 Atmospheric Ge... (by )
  • Implementation of Multirate Time Integra... (by )
  • An Improved Parameterization of Tidal Mi... (by )
  • Evaluation of Roadway Gaussian Plume Mod... (by )
  • An Integrated Assessment Modeling Framew... (by )
  • Matching Soil Grid Unit Resolutions with... (by )
  • Adding a Dynamical Cryosphere Into ILove... (by )
  • Gnaqpms-hg V1.0, a Global Nested Atmosph... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.