World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Rearrangement of Stresses in Fault Zones – Detecting Major Issues of Coupled Hydraulic–mechanical Processes with Relevance to Geothermal Applications : Volume 2, Issue 1 (10/09/2014)

By Ziefle, G.

Click here to view

Book Id: WPLBN0004009977
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Rearrangement of Stresses in Fault Zones – Detecting Major Issues of Coupled Hydraulic–mechanical Processes with Relevance to Geothermal Applications : Volume 2, Issue 1 (10/09/2014)  
Author: Ziefle, G.
Volume: Vol. 2, Issue 1
Language: English
Subject: Science, Geothermal, Energy
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Ziefle, G. (2014). Rearrangement of Stresses in Fault Zones – Detecting Major Issues of Coupled Hydraulic–mechanical Processes with Relevance to Geothermal Applications : Volume 2, Issue 1 (10/09/2014). Retrieved from

Description: Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655 Hannover, Germany. The South German Molasse Basin provides favourable conditions for geothermal plants. Nevertheless, micro-seismic events occur in the vicinity of the geothermal Unterhaching Gt2 well and seem to be caused by the geothermal plant.

The injection and production are located in an existing fault system. The majority of seismic events takes place at a horizontal distance of 500 m or less of the borehole. However, none of the seismic events are located in the injection reservoir but in fact at a significantly greater depth. A deeper process understanding of the interacting thermal–hydraulic–mechanical effects in the vicinity of the well is desired.

This article presents a significantly simplified 2-D model, investigating interactions of the stress field in the vicinity of the geothermal well and movements in the fault system. This might be of special interest, as the operation of the geothermal plant might lead to changes in the material and fracture properties on the one hand and in the equilibrium state on the other. A detailed description of the model, as well as various parameter studies, is presented. It can be seen that boundary conditions such as direction of the stress field in relation to the fault system, geometry of the fault system and parameters of the fractures have a significant influence on stresses in the proximity of the geothermal well. A variation in the spatial stress field in some parts of the fault system is to be expected. For the chosen assumptions the dimension of this variation is about 25% of the assumed stresses. Future work on this model might focus on the characteristics of the fault system, as well as on the influence of the coupled thermal–hydraulic–mechanical effects.

Rearrangement of stresses in fault zones – detecting major issues of coupled hydraulic–mechanical processes with relevance to geothermal applications

Hillis, R.: Pore pressure/stress coupling and its implications for seismicity, Explor. Geophys., 31, 448–454, 2000.; BStWIVT – Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie: Bayerischer Geothermieatlas – Hydrothermale Energiegewinnung, 93 pp., München, 2010.; Byerlee, J. D.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.; Ferrill, D. A. and Morris, A. P.: Dilational normal faults, J. Struct. Geol., 25, 183–196, 2003.; Fossen, H.: Structural Geology. Cambridge University Press, Cambridge, 2010.; Ganz, B., Schellschmidt, R., Schulz, R., and Sanner, B.: Geothermal Energy Use in Germany – Proceedings European Geothermal Congress 2013, 16 pp., Pisa, Italy, 3–7 June 2013.; Gudmundsson, A.: Rock Fractures in Geological Processes, Cambridge University Press, Cambridge, 2011.; Gehle, C.: Bruch- und Scherverhalten von Gesteinstrenn- flächen mit dazwischenliegenden Materialbrücken. Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, 33, 1439–9342, Bochum 2002.; Legarth, B., Huenges, E., and Zimmermann, G.: Hydraulic fracturing in sedimentary geothermal reservoirs, Int. J. Rock Mech. Min., 42, 1028–1041, 2005.; Lüschen, E., Dussel, M., Thomas, R., and Schulz, R.: 3D seismic survey for geothermal exploration at Unterhaching, Munich, Germany, First Break, 29, 45–54, 2011.; Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R., and Schulz, R.: 3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany, Geothermics, 50, 167–179, 2014.; Mattle, B., John, M., and Spiegl, A.: Numerische Untersuchungen für den Tunnelbau im verkarsteten Gebirge, Felsbau, Rock and Soil Engineering, 21, 29–34, Verlag Glückauf, 2003.; Megies, T. and Wassermann, J.: Microseismicity observed at a non-pressure-stimulated geothermal power plant, Geothermics, in press, doi:10.1016/j.geothermics.2014.01.002, 2014.; Moeck, I. and Backers, T.: Fault reactivation potential as a critical factor during reservoir stimulation, First Break, 29, 73–80, 2011.; Morris, A., Ferrill, D. A., and Henderson, D. B.: Slip tendency analysis and fault reactivation, Geology, 24, 275–278, 1996.; Pollard, D. D. and Fletcher, R. C.: Fundamentals of Structural Geology, Cambridge University Press, Cambridge, 2005.; Reinecker, J., Tingay, M., Müller, B., and Heidbach, O.: Present-day stress orientation in the Molasse Basin, Tectonophysics, 482, 129–138, 2010.; Rinne, M.: Fracture Mechanics and Subcritical Crack Growth Approach to Model Time-Dependent Failure in Brittle Rock. Dissertation, ISBN 978-951-22-9435-0, Helsinki University of Technology, 2008.; Rinne, M., Shen, B., and Lee, H.-S.: Äspö Hard Rock Laboratory, Äspö Pillar Stability Experiment, Modelling of fracture stability by Fracod – Preliminary results. International Progress Report IPR-03-05, Fracom, 2003.; Schumacher, S.: Induzierte Seismizität: Ursachenforschung durch numerische Modellierung am Beispiel Uha Gt2. Der Geothermie Kongress DGK 2013 in Essen, Kongressband ISBN-13:978-3-932570-68-1, Poster, GtV-Bundesverband Geothermie e.V., 2013.; Seithel, R.: Charakterisierung tektonischer Spannungen für ein Geothermieprojekt in der süddeutschen Molasse. M-3, in: Interne Schriftenreihe Institut für Angewandte Geowissenschaften Fachbereich Geothermie, edited by: Kohl, T., 2013.; Shen, B.: FRACOD Version 1.1, User's manual, Fracom Ltd, 2002.; Shen, B. and Stephansson, O.: Modification of the G-criterion of crack propagation in compression. Int. J. of Engineering Fracture Mechanics, 47, 177–189, 1993a.; Shen, B. and Stephansson, O.: Numerical analysis of Mode I and Mode II propagation of rock fractures, Int. J. Rock Mech. Min., 30, 861–867, 1993b.; Shen, B., Stephansson, O., and Rinne, M.: Modelling Rock Fracturing Processes – A Fracture Mechanics Approach Using FRACOD. ISBN: 978-94-007-6903-8 (Print) 978-94-007-6904-5


Click To View

Additional Books

  • Effectiveness of Acidizing Geothermal We... (by )
  • Reservoir Characterization of the Upper ... (by )
  • Geothermal Resources and Reserves in Ind... (by )
  • Assessing the Prospective Resource Base ... (by )
  • Empirical Relations of Rock Properties o... (by )
  • Overcoming Challenges in the Classificat... (by )
  • Classification of Geothermal Resources b... (by )
  • Influence of Major Fault Zones on 3-d Co... (by )
  • Proposal of a Consistent Framework to In... (by )
  • Stored-heat Assessments: a Review in the... (by )
  • Bulletin - New York State Museum Volume: no. 16 1897 (by )
  • A Cloud-to-ground Lightning Climatology ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.