World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Reservoir Characterization of the Upper Jurassic Geothermal Target Formations (Molasse Basin, Germany): Role of Thermofacies as Exploration Tool : Volume 3, Issue 1 (22/06/2015)

By Homuth, S.

Click here to view

Book Id: WPLBN0004009983
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Reservoir Characterization of the Upper Jurassic Geothermal Target Formations (Molasse Basin, Germany): Role of Thermofacies as Exploration Tool : Volume 3, Issue 1 (22/06/2015)  
Author: Homuth, S.
Volume: Vol. 3, Issue 1
Language: English
Subject: Science, Geothermal, Energy
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Götz, A. E., Sass, I., & Homuth, S. (2015). Reservoir Characterization of the Upper Jurassic Geothermal Target Formations (Molasse Basin, Germany): Role of Thermofacies as Exploration Tool : Volume 3, Issue 1 (22/06/2015). Retrieved from

Description: Züblin Spezialtiefbau GmbH, Ground Engineering, Europa Allee 50, 60327 Frankfurt a. M., Germany. The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2–3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir properties based on outcrop and drilling data demonstrates that this approach is a powerful tool for exploration and operation of geothermal reservoirs.

Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

Abdulagatova, Z., Abdulagatov, I. M., and Emirov, V. N.: Effect of temperature and pressure on the thermal conductivity of sandstone, Int. J. Rock Mech. Min., 46, 1055–1071, 2009.; Bär, K., Arndt, D., Fritsche, J.-G., Götz, A. E., Kracht, M., Hoppe, A., and Sass, I.: 3-D-Modellierung der tiefengeothermischen Potenziale von Hessen: Eingangsdaten und Potenzialausweisung, Z. Dt. Ges. Geowiss., 162, 371–388, 2011.; Birner, J., Fritzer, T., Jodocy, M., Savvatis, A., Schneider, M., and Stober, I.: Hydraulische Eigenschaften des Malmaquifers im Süddeutschen Molassebecken und ihre Bedeutung für die geothermische Erschließung, Z. Geol. Wiss., 40, 133–156, 2012.; Bjørkum, P. A. and Nadeau, P. H.: Temperature controlled porosity/permeability reduction, fluid migration, and petroleum exploration in sedimentary basins, Australian Pet. Prod. Expl. Assoc. J., 38, 453–464, 1998.; Böhm, F., Savvatis, A., Steiner, U., Schneider, M., and Koch, R.: Lithofazielle Reservoircharakterisierung zur geothermischen Nutzung des Malm im Großraum München, Grundwasser, 18, 3–13, 2013.; Chilingarian, G. V., Mazzullo, S. J., and Rieke, H. H.: Carbonate Reservoir Characterization: A Geologic-Engineering Analysis, Elsevier Sci. Publs. B. V., Amsterdam, the Netherlands, 639 pp., 1992.; Clauser, C. (Ed.): Numerical Simulation of Reactive Flow in Hot Aquifers – SHEMAT and Processing SHEMAT, Springer-Verlag, Berlin Heidelberg, Germany, doi:10.1007/978-3-642-55684-5, 2003.; Jodocy, M. and Stober, I.: Porosities and Permeabilities in the Upper Rhine Graben and in the SW Molasse Basin (Germany), Erdöl Erdgas Kohle, 127, 20–27, 2011.; Clauser, C. and Huenges, E.: Thermal Conductivity of Rocks and Minerals, Rock Physics and Phase Relations, A Handbook of Physical Constants, AGU Reference Shelf, 3, 105–126, 1995.; Clauser, C., Deetjen, H., Höhne, F., Rühaak, W., Hartmann, A., Schellschmidt, R., Rath, V., and Zschocke, A.: Erkennen und Quantifizieren von Strömung: Eine geothermische Rasteranalyse zur Klassifizierung des tiefen Untergrundes in Deutschland hinsichtlich seiner Eignung zur Endlagerung radioaktiver Stoffe, Endbericht zum Auftrag 9X0009-8390-0 des Bundesamtes für Strahlenschutz (BfS), Applied Geophysics and Geothermal Energy E.ON Energy Research Center, RWTH Aachen, Germany, 159 pp., 2002.; Dunham, R. J.: Classification of carbonate rocks according to depositional texture, in: Classification of carbonate rocks, edited by: Ham, W. E., AAPG Memoir, 1, 108–171, 1962.; Ehrenberg, S. N. and Nadeau, P. H.: Sandstone versus carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships, AAPG Bulletin, 89, 435–445, 2005.; Embry, A. F. and Klovan, J. E.: A Late Devonian reef tract on Northeastern Banks Island, NWT: Canadian Petroleum Geology Bulletin, 19, 730–781, 1971.; Fuchs, S. and Förster, A.: Well-log based prediction of thermal conductivity of sedimentary successions: a case study from the North German Basin, Geophys. J. Int., 196, 291–311 doi:10.1093/gji/ggt382, 2013.; Geyer, O. F. and Gwinner, M. P.: Die Schwäbische Alb und ihr Vorland, Slg. Geol. Führer, 67, 271 pp., 1979.; Gwinner, M. P.: Origin of the Upper Jurassic of the Swabian Alb, Contrib. Sedimentol., 5, 1–75, 1976.; Hartmann, A., Rath, V., and Clauser, C.: Thermal conductivity from core and well log data, Int. J. Rock Mech. Min., 42, 1042–1055, 2005.; Homuth, S., Götz, A. E., and Sass, I.: Facies relation and depth dependency of thermo- and petrophysical rock parameters of the Upper Jurassic geothermal carbonate reservoirs of the Molasse Basin, Z. Dt. Ges. Geowiss., 165, 469–486, 2014.; Hornung, J. and Aigner, T.: Sedimentäre Architektur und Poroperm-Analyse fluviatiler Sandsteine: Fallbeispiel Coburger Sandstein, Franken, Hallesches Jahrb. Geowiss., Reihe B, 18, 121–138, 2004.; Jaritz, R.: Quantifizierung der Heterogenität eine


Click To View

Additional Books

  • Geothermal Resources and Reserves in Ind... (by )
  • Classification of Geothermal Resources b... (by )
  • Overcoming Challenges in the Classificat... (by )
  • Assessing the Prospective Resource Base ... (by )
  • Proposal of a Consistent Framework to In... (by )
  • Empirical Relations of Rock Properties o... (by )
  • Rearrangement of Stresses in Fault Zones... (by )
  • Influence of Major Fault Zones on 3-d Co... (by )
  • Effectiveness of Acidizing Geothermal We... (by )
  • Stored-heat Assessments: a Review in the... (by )
  • Microstructure Observations During the S... (by )
  • Tidal Modulation of Two-layer Hydraulic ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.