World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Evapotranspiration Modelling at Large Scale Using Near-real Time Msg Seviri Derived Data : Volume 7, Issue 5 (20/09/2010)

By Ghilain, N.

Click here to view

Book Id: WPLBN0004012675
Format Type: PDF Article :
File Size: Pages 42
Reproduction Date: 2015

Title: Evapotranspiration Modelling at Large Scale Using Near-real Time Msg Seviri Derived Data : Volume 7, Issue 5 (20/09/2010)  
Author: Ghilain, N.
Volume: Vol. 7, Issue 5
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Arboleda, A., Gellens-Meulenberghs, F., & Ghilain, N. (2010). Evapotranspiration Modelling at Large Scale Using Near-real Time Msg Seviri Derived Data : Volume 7, Issue 5 (20/09/2010). Retrieved from

Description: Royal Meteorological Institute, Brussels, Belgium. We present an evapotranspiration (ET) model developed in the framework of the EUMETSAT Satellite Application Facility (SAF) on Land Surface Analysis (LSA). The model is a simplified Soil-Vegetation-Atmosphere Transfer (SVAT) scheme that uses as input a combination of remote sensed data and atmospheric model outputs. The inputs based on remote sensing are LSA-SAF products: the Albedo (AL), the Downwelling Surface Shortwave Flux (DSSF) and the Downwelling Surface Longwave Flux (DSLF). They are available with the spatial resolution of the MSG SEVIRI instrument. ET maps covering the whole MSG field of view are produced by the model every 30 min, in near-real-time, for all weather conditions. This paper presents the adopted methodology and a set of validation results. The model quality is evaluated in two ways. First, ET results are compared with ground observations (from CarboEurope and national weather services), for different land cover types, over a full vegetation cycle in the Northern Hemisphere in 2007. This validation shows that the model is able to reproduce the observed ET temporal evolution from the diurnal to annual time scales for the temperate climate zones: the mean bias is less than 0.02 mm h−1 and the root-mean square error is between 0.06 and 0.10 mm h−1. Then, ET model outputs are compared with those from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Global Land Data Assimilation System (GLDAS). From this comparison, a high spatial correlation is noted, between 80 to 90%, around midday time frame. Nevertheless, some discrepancies are also observed and are due to the different input variables and parameterisations used.

Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data

Albergel, C., Calvet, J.-C., Mahfouf, J.-F., R�diger, C., Barbu, A. L., Lafont, S., Roujean, J.-L., Walker, J. P., Crapeau, M., and Wigneron, J.-P.: Monitoring of water and carbon fluxes using a land data assimilation system: a case study for southwestern France, Hydrol. Earth Syst. Sci., 14, 1109–1124, doi:10.5194/hess-14-1109-2010, 2010.; Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506, 2007.; Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Leitat, E.: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agr. Forest Meteorol., 108(4), 293–315, 2001.; Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Mahli, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pileggard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82 (11), 2415–2434, 2001.; Balsamo, G., Viterbo, P., Beijaars, A., van den Hurk, B., Hirschi, M., Betts, A. K., Scipal, K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system, J. Hydrometeorol., 10(3), 623–643, 2009.; Bastiaanssen, W. G. M., Pelgrum, H., Droogers, P., de Bruin, H. A. R., and Menenti, M.: Area-average estimates of evaporation, wetness indicators and top soil moisture during two golden days in EFEDA, Agr. Forest Meteorol., 87, 119–137, 1997.; Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M.: The Surface Energy Balance Algorithm for Land (SEBAL): Part 1 formulation, J. Hydrol., 212–213, 198– 212, 1998.; Beljaars, A. C. M. and Bosveld, F. C.: Cabauw data for the validation of land surface parameterization schemes, J. Climate, 10, 1172–1193, 1997.; Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., and Duchemin, B.: Analysis of evaporative fraction diurnal behaviour, Agr. Forest Meteorol., 143, 12–29, 2007.; Beljaars, A. C. M. and Viterbo, P.: The sensitivity of winter evaporation to the formulation of aerodynamic resistance in the ECMWF model, Bound.-Lay. Meteorol., 71 (1–2), 135–149, 1994.; Boone, A., de Rosnay, P., Balsamo, G., Beljaars, A., Chopin, F., Decharme, B., Delire, C., Ducharme, A., Gascoin, S., Grippa, M., Guichard, F., Gusev, Y., Harris, P., Jarlan, L., Kergoat, L., Mougin, E., Nasonova, O., Norgaard, A., Orgeval, T., Ottlé, C., Poccard-Leclercq, I., Polcher, J., Sandholt, I., Saux-Picart, S., Taylor, C., and Xue, Y.: The AMMA Land Surface Model Intercomparison Project (ALMIP), B. Am. Meteorol. Soc., 1865–1880, 2009.; Brutsaert, W. H.: Evaporation in the Atmosphere – Theory, History, and Applications, Kluwer Academic, D. Reidel publishers, Dordrecht, The Netherlands, 299 pp., 1982.; Carrer, D., Roujean, J.-L., and Meurey, C.: Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS, IEEE T. Geosci. Remote, 48, 1714–1728, doi:10.1109/TGRS.2009.2034530, 2010.; Chehbouni, A., Qi, J., Lo Seen, D., Kerr, Y. H., Dedieu, G., Moran, S., Daubas, M., and Monteny, B. M.: Estimation of real evaporation, in: Proc. Int. workshop on Remote Sensing and Water Resources, Montpellier, France, 30 November 1996, Montpellier, 10 pp., 1996.; Courault, D., Seguin, B., and Olioso, A.: Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modelling approaches, Irrigation and Drainage Systems, 19, 223–249, 2005.; Dolman, A. J., Moors, E. J., Elbers, J. A., and Snijders, W.:


Click To View

Additional Books

  • Examining the Spatial and Temporal Varia... (by )
  • The Role of Catchment Characteristics in... (by )
  • Conditioning Rainfall-runoff Model Param... (by )
  • Depth Distribution of Preferential Flow ... (by )
  • An Ecohydrological Sketch of Climate Cha... (by )
  • A Trading-space-for-time Approach to Pro... (by )
  • How will Climate Change Modify River Flo... (by )
  • Resolving Conflicting Objectives in the ... (by )
  • A Simple Lumped Model to Convert Air Tem... (by )
  • Scale Effect on Runoff in Alpine Mountai... (by )
  • The Influence of Precipitation and Tempe... (by )
  • Comparison of Trmm, Mpeg and Cfsr Rainfa... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.