World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

The Low Backscattering Targets Classification in Urban Areas : Volume I-7, Issue 1 (17/07/2012)

By Shi, L.

Click here to view

Book Id: WPLBN0004013686
Format Type: PDF Article :
File Size: Pages 6
Reproduction Date: 2015

Title: The Low Backscattering Targets Classification in Urban Areas : Volume I-7, Issue 1 (17/07/2012)  
Author: Shi, L.
Volume: Vol. I-7, Issue 1
Language: English
Subject: Science, Isprs, Annals
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Shi, L. (2012). The Low Backscattering Targets Classification in Urban Areas : Volume I-7, Issue 1 (17/07/2012). Retrieved from

Description: The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing of Wuhan University, 430079, P. R. China. The Polarimetric and Interferometric Synthetic Aperture Radar (POLINSAR) is widely used in urban area nowadays. Because of the physical and geometric sensitivity, the POLINSAR is suitable for the city classification, power-lines detection, building extraction, etc. As the new X-band POLINSAR radar, the china prototype airborne system, XSAR works with high spatial resolution in azimuth (0.1 m) and slant range (0.4 m). In land applications, SAR image classification is a useful tool to distinguish the interesting area and obtain the target information. The bare soil, the cement road, the water and the building shadow are common scenes in the urban area. As it always exists low backscattering sign objects (LBO) with the similar scattering mechanism (all odd bounce except for shadow) in the XSAR images, classes are usually confused in Wishart-H-Alpha and Freeman-Durden methods. It is very hard to distinguish those targets only using the general information. To overcome the shortage, this paper explores an improved algorithm for LBO refined classification based on the Pre-Classification in urban areas. Firstly, the Pre-Classification is applied in the polarimetric datum and the mixture class is marked which contains LBO. Then, the polarimetric covariance matrix C3 is re-estimated on the Pre-Classification results to get more reliable results. Finally, the occurrence space which combining the entropy and the phase-diff standard deviation between HH and VV channel is used to refine the Pre-Classification results. The XSAR airborne experiments show the improved method is potential to distinguish the mixture classes in the low backscattering objects.



Click To View

Additional Books

  • Calibration of a Multi-beam Laser System... (by )
  • Validation of Dems Derived from High Res... (by )
  • Correction of Faulty Lines in Muscle Mod... (by )
  • Orientation Based Building Outline Extra... (by )
  • Automated Extraction of Buildings and Ro... (by )
  • Sparsity Based Regularization Approaches... (by )
  • Facade Reconstruction with Generalized 2... (by )
  • Octree-based Simd Strategy for Icp Regis... (by )
  • An Automatic and Modular Stereo Pipeline... (by )
  • Complex Urban Simulations and Sustainabl... (by )
  • 3D Visibility Analysis in Urban Environm... (by )
  • Spatiotemporal Information Organization ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.