World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Sensitivity of a Distributed Temperature-radiation Index Melt Model Based on a Four Melt Season Aws Record from Hurd Peninsula Glaciers, Livingston Island, Antarctica : Volume 5, Issue 6 (28/11/2011)

By Jonsell, U. Y.

Click here to view

Book Id: WPLBN0004016971
Format Type: PDF Article :
File Size: Pages 38
Reproduction Date: 2015

Title: Sensitivity of a Distributed Temperature-radiation Index Melt Model Based on a Four Melt Season Aws Record from Hurd Peninsula Glaciers, Livingston Island, Antarctica : Volume 5, Issue 6 (28/11/2011)  
Author: Jonsell, U. Y.
Volume: Vol. 5, Issue 6
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Lapazaran, J. J., Navarro, F. J., Bañón, M., Jonsell, U. Y., & Otero, J. (2011). Sensitivity of a Distributed Temperature-radiation Index Melt Model Based on a Four Melt Season Aws Record from Hurd Peninsula Glaciers, Livingston Island, Antarctica : Volume 5, Issue 6 (28/11/2011). Retrieved from

Description: Departamento de Matemática Aplicada, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense, 30, 28040 Madrid, Spain. We use an automatic weather station and mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do in general balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 0.14 m w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 °C increase results in 56 % higher melt rates.

Sensitivity of a distributed temperature-radiation index melt model based on a four melt season AWS record from Hurd Peninsula glaciers, Livingston Island, Antarctica

Andreas, E. L.: A Theory for the Scalar Roughness and the Scalar Transfer-Coefficients over Snow and Sea Ice, Bound-Lay. Meteorol., 38, 159–184, 1987.; Andreassen, L. M., van den Broeke, M. R., Giesen, R. H., and Oerlemans, J.: A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway, J. Glaciol., 54, 245–258, 2008.; Beljaars, A. C. M. and Holtslag, A. A. M.: Flux Parameterization over Land Surfaces for Atmospheric Models, J. Appl. Meteorol., 30, 327–341, 1991.; Braun, M. and Hock, R.: Spatially distributed surface energy balance and ablation modeling of the ice cap of King George Island (Antarctica), Global Planet. Change, 42, 45–48, 2004.; Brock, B. W., Willis, I. C., Sharp, M. J., and Arnold, N. S.: Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier d'Arolla, Switzerland, Ann. Glaciol., 31, 53–62, 2000.; Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. G.: Retreating glacier fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005.; Cutler, P. M. and Munro, D. S.: Visible and near-infrared reflectivity during the ablation period on Peyto Glacier, Alberta, Canada, J. Glaciol., 42, 333–340, 1996.; Giesen, R. H., van den Broeke, M. R., Oerlemans, J., and Andreassen, L. M.: Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: Interannual variability and the effect of clouds, J. Geophys. Res., 113, D21111, doi:1029/2008JD010390, 2008.; Greuell, W. and Genthon, C.: Modelling land an ice surface mass balance, in: Mass balance of the cryosphere: Observations and modelling of contemporary and future climate change, edited by: Bamber, J. L. and Payne, A. J., 117–168, Cambridge University Press, Cambridge, UK, 2004.; Hock, R.: A distributed temperature-index ice- and snowmelt model including potential direct solar radiation, J. Glaciol., 45, 101–111, 1999.; Hock, R.: Glacier melt: a review of processes and their modelling, Prog. Phys. Geog., 29, 362–391, 2005.; Hock, R. and Holmgren, B.: A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden, J. Glaciol., 51, 25–36, 2005.; Hulth, J., Rolstad, C., Trondsen, K., and Rodby, R. W.: Surface mass and energy balance of Sorbreen, Jan Mayen, 2008, Ann. Glaciol., 51, 110–119, 2010.; Jansson, P.: Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären, Geogr. Ann., 81A, 633–642, 1999.; Jonsell, U., Hock, R., and Holmgren, B.: Spatial and temporal variations in albedo on Storglaciaren, Sweden, J. Glaciol., 49, 59–68, 2003.; Koh, G. and Jordan, R.: Subsurface melting in a seasonal snow cover, J. Glaciol., 41, 474–482, 1995.; Molina, C., Navarro, F. J., Calvet, J., García-Sellés, D., and Lapazaran, J. J.: Hurd Peninsula glaciers, Livingston Island, Antarctica, as indicators of regional warming: ice volume changes during the period 1956–2000, Ann. Glaciol., 46, 43–49, 2007.; Möller, M., Finkelnburg, R., Braun, M., Hock, R., Jonsell, U., Pohjola, V., Scherer, D., and Schneider, C.: Climatic mass balance of the ice cap Vestfonna, Svalbard – a spatially distributed assessment using ERA-Interim and MODIS data, J. Geophys. Res., 116, F03009, doi:10.1029/2010JF001905, 2011.; Navarro, F. J., Otero, J., Macheret, Yu. Ya., Vasilenko, E. V., Lapazaran, J. J., Ahlstrøm, A. P., and Machío, F.: Radioglaciological studies on Hurd Peninsula glaciers, Livingston Island, Antarctica, Ann. Glaciol., 50, 17–24, 2009.; Navarro, F. J., Jonsell, U. Y., Corcuera, M. I., and Martín-Español, A.: Decelerated mass loss of Hurd and Johnsons glaciers, Livingston Island, Antarctic Peninsula, in spite of continued regional warming, in prep., 2011.; Ohmura, A.: Physical basis for the temperature-based melt-index method, J. Appl. Meteorol., 40, 753–761, 2001.; Otero, J.: Generación automática de malla de elementos finitos en


Click To View

Additional Books

  • Drifting Snow Measurements on the Greenl... (by )
  • Monitoring Ice Break-up on the MacKenzie... (by )
  • Sensitivity of Greenland Ice Sheet Surfa... (by )
  • Basal Crevasses in Larsen C Ice Shelf an... (by )
  • The Early Twentieth Century Warming and ... (by )
  • Surface Depressions (Lacunas) on Bering ... (by )
  • A Spurious Jump in the Satellite Record:... (by )
  • Albedo Over Snow and Ice Penitents : Vol... (by )
  • Sheet, Stream, and Shelf Flow as Progres... (by )
  • Variability of Mass Changes at Basin Sca... (by )
  • Ground Penetrating Radar Detection of Su... (by )
  • Quantifying Present and Future Glacier M... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.