World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Formulation of an Ocean Model for Global Climate Simulations : Volume 1, Issue 1 (12/09/2005)

By Griffies, S. M.

Click here to view

Book Id: WPLBN0004020167
Format Type: PDF Article :
File Size: Pages 35
Reproduction Date: 2015

Title: Formulation of an Ocean Model for Global Climate Simulations : Volume 1, Issue 1 (12/09/2005)  
Author: Griffies, S. M.
Volume: Vol. 1, Issue 1
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2005
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Rosati, A., Spelman, M. J., Russell, J. L., Gerdes, R., Samuels, B. L., Griffies, S. M.,...Winton, M. (2005). Formulation of an Ocean Model for Global Climate Simulations : Volume 1, Issue 1 (12/09/2005). Retrieved from http://www.ebooklibrary.org/


Description
Description: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, USA. This paper summarizes the formulation of the ocean component to the Geophysical Fluid Dynamics Laboratory's (GFDL) climate model used for the 4th IPCC Assessment (AR4) of global climate change. In particular, it reviews the numerical schemes and physical parameterizations that make up an ocean climate model and how these schemes are pieced together for use in a state-of-the-art climate model. Features of the model described here include the following: (1) tripolar grid to resolve the Arctic Ocean without polar filtering, (2) partial bottom step representation of topography to better represent topographically influenced advective and wave processes, (3) more accurate equation of state, (4) three-dimensional flux limited tracer advection to reduce overshoots and undershoots, (5) incorporation of regional climatological variability in shortwave penetration, (6) neutral physics parameterization for representation of the pathways of tracer transport, (7) staggered time stepping for tracer conservation and numerical efficiency, (8) anisotropic horizontal viscosities for representation of equatorial currents, (9) parameterization of exchange with marginal seas, (10) incorporation of a free surface that accomodates a dynamic ice model and wave propagation, (11) transport of water across the ocean free surface to eliminate unphysical ``virtual tracer flux methods, (12) parameterization of tidal mixing on continental shelves. We also present preliminary analyses of two particularly important sensitivities isolated during the development process, namely the details of how parameterized subgridscale eddies transport momentum and tracers.

Summary
Formulation of an ocean model for global climate simulations

Excerpt
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Modelling, 7, 269-284, 2004.; Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by shaved cells in a height coordinate ocean model, Monthly Weather Review, 125, 2293-2315, 1997.; Anderson, J L., Balaji, V., Broccoli, A J., Cooke, W F., Delworth, T L., Dixon, K W., Donnor, L J., Dunne, K A., Freidenreich, S M., Garner, S T., Gudgel, R G., Gordon, C., Held, I M., Hemler, R S., Horowitz, L W., Klein, S A., Knuttson, T R., Kushner, P J., Langenhorst, A R., Lau, N.-C., Liang, Z., Malyshev, S L., Milly, P., Nath, M J., Ploshay, J J., Ramaswany, V., Schwarzkopf, M D., Shevliakova, E., Sirutis, J J., Soden, B J., Stern, W F., Thompson, L A., Wilson, R J., Wittenberg, A T., and Wyman, B L.: The GFDL Global Atmospheric Model Development Team: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations, Journal of Climate, 17, 4641-4673, 2005.; Asselin, R.: Frequency filter for time integrations, Monthly Weather Review, 100, 487-490, 1972.; Beckers, J M., Burchard, H., Campin, J.-M., Deleersnijder, E., and Mathieu, P P.: Another reason why simple discretizations of rotated diffusion operators cause problems in ocean models: Comments on isoneutral diffusion in a $z$-coordinate ocean model, Journal of Physical Oceanography, 28, 1552-1559, 1998.; Beckers, J M., Burchard, H., Deleersnijder, E., and Mathieu, P P.: Numerical discretization of rotated diffusion operators in ocean models, Monthly Weather Review, 128, 2711-2733, 2000.; Beckmann, A.: The representation of bottom boundary layer processes in numerical ocean circulation models, in: Ocean Modeling and Parameterization, edited by: Chassignet, E. P. and Verron, J., vol. 516 of NATO ASI Mathematical and Physical Sciences Series, 135-154, Kluwer, 1998.; Beckmann, A. and D\oscher, R.: A method for improved representation of dense water spreading over topography in geopotential-coordinate models, Journal of Physical Oceanography, 27, 581-591, 1997.; Bentsen, M., Evensen, G., Drange, H., and Jenkins, A.: Coordinate Transformation on a Sphere Using Conformal Mapping, Monthly Weather Review, 1267, 2733-2740, 1999.; Bryan, F.: Parameter sensitivity of primitive equation ocean general circulation models, Journal of Physical Oceanography, 17, 970-985, 1987.; Bryan, K.: A numerical method for the study of the circulation of the world ocean, Journal of Computational Physics, 4, 347-376, 1969a.; Bryan, K.: Climate and the ocean circulation III: The ocean model, Monthly Weather Review, 97, 806-824, 1969b.; Bryan, K. and Cox, M D.: A numerical investigation of the oceanic general circulation, Tellus, XIX, 54-80, 1967.; Bryan, K. and Cox, M D.: An approximate equation of state for numerical models of the ocean circulation, Journal of Physical Oceanography, 4, 510-514, 1972.; Bryan, K. and Lewis, L J.: A water mass model of the world ocean, Journal of Geophysical Research, 84, 2503-2517, 1979.; Bryan, K., Manabe, S., and Pacanowski, R C.: A global ocean-atmosphere climate model. Part II. The oceanic circulation, Journal of Physical Oceanography, 5, 30-46, 1975.; Bryan, K., Dukowicz, J K., and Smith, R D.: On the Mixing Coefficient in the Parameterization of Bolus Velocity, Journal of Physical Oceanography, 29, 2442-2456, 1999.; Campin, J.-M., Adcroft, A., Hill, C., and Marshall, J.: Conservation of properties in a free-surface model, Ocean Modelling, 6, 221-244, 2004.; Conkright, M., Antonov, J., Baranova, O., Boyer, T., Garcia, H., Gelfeld, F., Johnson, D., Locarnini, R., Murphy, P., O'Brien, T., Smolyar, I., and Stephens, C.: World Ocean Database 2001, Volume 1: Introduction, NOAA Atlas NESD'is 42, US Government Printing Office~13, NOAA, Washington, D.C., 167 pp., 2002.; Coward, A., Killworth, P., and Blundell, J.: Tests of a two-grid world ocean model, Journal of Geophysical Research, 99, 22 725-22 73

 

Click To View

Additional Books


  • An Improved Method for the Determination... (by )
  • Variability in the Air–sea Interaction P... (by )
  • Technical Note: a Fully Automated Purge ... (by )
  • El Niño in a Changing Climate: a Multi-m... (by )
  • On the Seasonal Cycles and Variability o... (by )
  • Tidal Generation of Large Sub-mesoscale ... (by )
  • The Effect of Tides on Dense Water Forma... (by )
  • Technical Note: Detection of Gas Bubble ... (by )
  • On the Observability of Turbulent Transp... (by )
  • Obstacles and Benefits of the Implementa... (by )
  • Adapting to Life: Ocean Biogeochemical M... (by )
  • Spectrophotometric High-precision Seawat... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.