World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Transport of Warm Upper Circumpolar Deep Water Onto the Western Antarctic Peninsula Continental Shelf : Volume 8, Issue 4 (10/07/2012)

By Martinson, D. G.

Click here to view

Book Id: WPLBN0004020586
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Transport of Warm Upper Circumpolar Deep Water Onto the Western Antarctic Peninsula Continental Shelf : Volume 8, Issue 4 (10/07/2012)  
Author: Martinson, D. G.
Volume: Vol. 8, Issue 4
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Mckee, D. C., & Martinson, D. G. (2012). Transport of Warm Upper Circumpolar Deep Water Onto the Western Antarctic Peninsula Continental Shelf : Volume 8, Issue 4 (10/07/2012). Retrieved from http://www.ebooklibrary.org/


Description
Description: Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA. Five thermistor moorings were placed on the continental shelf of the western Antarctic Peninsula (between 2007 and 2010) in an effort to identify the mechanism(s) responsible for delivering warm Upper Circumpolar Deep Water (UCDW) onto the broad continental shelf from the Antarctic Circumpolar Current (ACC) flowing over the adjacent continental slope. Historically, four mechanisms have been suggested: (1) eddies shed from the ACC, (2) flow into the cross-shelf-cutting canyons with overflow onto the nominal shelf, (3) general upwelling, and (4) episodic advective diversions of the ACC onto the shelf. The mooring array showed that for the years of deployment, the dominant mechanism is eddies; upwelling may also contribute but to an unknown extent. Mechanism 2 played no role, though the canyons have been shown previously to channel UCDW across the shelf into Marguerite Bay. Mechanism 4 played no role independently, though eddies may be advected within a greater intrusion of the background flow.

Summary
Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf

Excerpt
Allen, S. E. and Durrieu de Madron, X.: A review of the role of submarine canyons in deep-ocean exchange with the shelf, Ocean Sci., 5, 607–620, doi:10.5194/os-5-607-2009, 2009.; Böning, C. W., Dispert, A., Visbeck, M., Rintoul, S. R., and Schwarzkopf, F. U.: The response of the Antarctic Circumpolar Current to recent climate change, Nat. Geosci., 1, 864–869, 2008.; Cook, A. J., Fox, A. J., Vaughan, D. G., and Ferrigno, J. C.: Retreating glacial fronts on the Antarctic Peninsula over the past half-century, Science, 308, 541–544, 2005.; Dinniman, M. S. and Klinck, J. M.: A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf, Deep-Sea Res. Pt. II, 51, 2003–2022, 2004.; Dinniman, M. S., Klinck, J. M., and Smith Jr., W. O.: A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves, Deep-Sea Res. Pt. II, 58, 1508–1523, 2011.; Ducklow, H. W., Clarke, A. W., Dickhut, R., Doney, S. C., Geisz, H., Huang, K., Martinson, D. G., Meredith, M. P., Moeller, H. V., Montes-Hugo, M., Schofield, O., Stammerjohn, S. E., Steinberg, D., and Fraser, W.: The Marine Ecosystem of the West Antarctic Peninsula, in: Antarctica: An Extreme Environment in a Changing World, edited by: Clarke, A., Johnston, N. M., Murphy, E. J., and Rogers, A. D., Wiley-Blackwell, London, 121–159, 2012.; Hofmann, E. E., Wiebe, P., Costa, P., and Torres, J. J.: An overview of the southern ocean global ocean ecosystems dynamics program, Deep Sea Res. Pt. II, 51, 1921–1924, 2004.; Hogg, A. C., Meredith, M. P., Blundell, J. R., and Wilson, C.: Eddy heat flux in the Southern Ocean: Response to Variable Wind Forcing, J. Climate, 21, 608–620, 2008.; Klinck, J. M. and Dinniman, M. S.: Exchange across the shelf break at high southern latitudes, Ocean Sci., 6, 513–524, doi:10.5194/os-6-513-2010, 2010.; Vaughan, D. G.: How does the Antarctic ice sheet affect sea level rise?, Science, 308, 1877–1878, 2005.; Webb, L.: Deep waters melting West Antarctica Ice Sheet Fringe mirror global ocean exponential warming, Columbia University Masters Thesis (unpublished), 2011.; Klinck, J. M., Hofmann, E. E., Beardsley, R. C., Salihoglu, B., and Howard, S.: Water-mass properties and circulation on the west Antarctic peninsula continental shelf in austral fall and winter 2001, Deep Sea Res. Pt. II, 51, 1925–1946, 2004.; Lilly, J. M, and Rhines, P. B.: Coherent eddies in the Labrador Sea observed from a mooring, J. Phys. Oce., 32, 585–598, 2002.; Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C., and Vernet, M.: Western Antarctic Peninsula physical oceanography and spatio-temporal variability, Deep Sea Res. Pt. II, 55, 1964–1987, 2008.; Moffat, C., Owens, B., and Beardsley, R. C.: On the characteristics of Circumpolar Deep Water intrusions to the west Antarctic Peninsula Continental Shelf, J. Geophys. Res., 114, C05017, 1–16, 2009.; Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea Res. Pt. I, 42, 641–673, 1995.; Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T{_}TIDE, Comput. Geosci., 28, 929–937, 2002.; Prezelin, B. B, Hofmann, E. E., Klinck, J. M, and Mengelt, C.: The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf, J. Marine Res., 58, 165–202, 2000.; Prezelin, B. B., Hofmann, E. E., Moline, M., and Klinck, J. M.: Physical forcing of phytoplankton community structure and primary production in continental shelf waters of the Western Antarctic Peninsula, J. Marine Res., 62, 419–460, 2004.; Rignot, E., Bamber, J. L., van den Broeke, M. R., Davis, C., Li, Y., van de Berg, W. J., and van Meijgaard, E.: Recent Antarctic ice mass loss from radar interferometry and regional climate modeling, Nat. Geosci., 1

 

Click To View

Additional Books


  • Assessment of the Structure and Variabil... (by )
  • About Uncertainties in Practical Salinit... (by )
  • Simulating Biomass Assimilation in a Med... (by )
  • Water Level Oscillations in Monterey Bay... (by )
  • About the Seasonal and Fortnightly Varia... (by )
  • Water Mass Transformation in the North A... (by )
  • Numerical Tools to Estimate the Flux of ... (by )
  • Evaluation of Global Monitoring and Fore... (by )
  • Is Coccolithophore Distribution in the M... (by )
  • Importance of the Variability of Hydrogr... (by )
  • Tidal Variability of the Motion in the S... (by )
  • Detecting Marine Hazardous Substances an... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.