World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics : Volume 5, Issue 1 (30/06/2014)

By Adhikari, S.

Click here to view

Book Id: WPLBN0004021249
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics : Volume 5, Issue 1 (30/06/2014)  
Author: Adhikari, S.
Volume: Vol. 5, Issue 1
Language: English
Subject: Science, Solid, Earth
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Nowicki, S., Ivins, E. R., Larour, E., Morlighem, M., Adhikari, S., & Seroussi, H. (2014). Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics : Volume 5, Issue 1 (30/06/2014). Retrieved from

Description: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA. The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr−1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

Future Antarctic bed topography and its implications for ice sheet dynamics

Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future sea level rise from the ice sheets, Nature Clim. Change, 3, 424–427, 2013.; Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data - Part 1: Data and methods, The Cryosphere, 3, 101–111,, 2009.; Bindschadler, R., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W., Martin, M., Morlighem, M., Parizek, B., Pollard, D., Price, S., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, F., Walker, R., and Wang, W.: Ice-Sheet Model Sensitivities to Environmental Forcing and Their Use in Projecting Future Sea-Level (The SeaRISE Project), J. Glaciol., 59, 195–224, doi:10.3189/2013JoG12J125, 2013.; Borstad, C. P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok, M. P., and Seroussi, H.: A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law, Geophys. Res. Lett., 39, 1–5, doi:10.1029/2012GL053317, 2012.; Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and Marshall McCabe, A.: The last glacial maximum, Science, 5941, 710–714, doi:10.1126/science.1172873, 2009.; Conway, H., Hall, B. L., Denton, G. H., Gades, A. M., and Waddington, E. D.: Past and future grounding-line retreat of the West Antarctic Ice Sheet, Science, 286, 280–283, doi:10.1126/science.286.5438.280, 1999.; Gomez, N., Mitrovica, J. X., Huybers, P., and Clark, P. U.: Sea level as a stabilizing factor for marine-ice-sheet grounding lines, Nat. Geosci., 3, 850–853, doi:10.1038/ngeo1012, 2010.; Gomez, N., Pollard, D., and Mitrovica, J.: A 3-D coupled ice sheet - sea level model applied to Antarctica through the last 40 ky, Earth Planet. Sci. Lett., 384, 88–99, 2013.; Greve, R.: A continuum-mechanical formulation for shallow polythermal ice sheets, Phil. Trans R. Soc. A, 355, 921–974, 1997.; Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim, B.-K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Lopez Galindo, A., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bijl, P. K., A. Carr, S., Dunbar, R. B., Flores, J. A., Hayden, T. G., Katsuki, K., Kong, G. S., Nakai, M., Olney, M. P., Pekar, S. F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., and Yamane, M.: Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nat. Geosci., 6, 765–769, doi:10.1038/ngeo1889, 2013.; Cuffey, K. and Paterson, W. S. B.: The Physics of Glaciers, 4th Edition, Elsevier, 2010.; Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., van den Broeke, M. R., and Moholdt, G.: Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, doi:10.1038/nature12567, 2013.; Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.; Favier, L., Gagliardini, O., Durand, G., and Zwinger, T.: A three-dimensional full Stokes model of the grounding line d


Click To View

Additional Books

  • Factors Driving Carbon Mineralization Pr... (by )
  • Geomagnetic Jerks Characterization Via S... (by )
  • Finite-difference Modelling to Evaluate ... (by )
  • Strain Localization in Brittle-ductile S... (by )
  • The Model of Own Seismoelectromagnetic O... (by )
  • Pacific Plate Slab Pull and Intraplate D... (by )
  • Observatory Crustal Magnetic Biases Duri... (by )
  • The Permeability and Elastic Moduli of T... (by )
  • Rapid Revegetation by Sowing Seed Mixtur... (by )
  • Exploring the Shallow Structure of the S... (by )
  • Rainfall and Human Activity Impacts on S... (by )
  • Dynamic Magma Mixing Revealed by the 201... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.