World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Modelling Snowdrift Sublimation on an Antarctic Ice Shelf : Volume 4, Issue 2 (10/05/2010)

By Lenaerts, J. T. M.

Click here to view

Book Id: WPLBN0004022409
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: Modelling Snowdrift Sublimation on an Antarctic Ice Shelf : Volume 4, Issue 2 (10/05/2010)  
Author: Lenaerts, J. T. M.
Volume: Vol. 4, Issue 2
Language: English
Subject: Science, Cryosphere
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Déry, S. J., König-Langlo, G., Munneke, P. K., M. Lenaert, J. T., Ettema, J., & Van Den Broeke, M. R. (2010). Modelling Snowdrift Sublimation on an Antarctic Ice Shelf : Volume 4, Issue 2 (10/05/2010). Retrieved from http://www.ebooklibrary.org/


Description
Description: Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, The Netherlands. In this paper, we estimate the contribution of snowdrift sublimation (SUds) to the surface mass balance at Neumayer, located on the Ekström ice shelf in Eastern Antarctica. A single column version of the RACMO2-ANT model is used as a physical interpolation tool of high-quality radiosonde and surface measurements for a 15-yr period (1993–2007), and combined with a routine to calculate snowdrift sublimation and horizontal snow transport. The site is characterised by a relatively mild, wet and windy climate, so snowdrift is a common phenomenon. The modelled timing and frequency of snowdrift events compares well with observations. This is further illustrated by an additional simulation for Kohnen base, where the timing of snowdrift is realistic, although the modelled horizontal transport is overestimated. Snowdrift sublimation is mainly dependent on wind speed, but also on relative humidity and temperature. During high wind speeds, SUds saturates and cools the air, limiting its own strength. We estimate that SUds removes around 16%±8% of the accumulated snow from the surface. The total sublimation more than triples when snowdrift is considered, although snowdrift sublimation limits sublimation at the surface. SUds shows a strong seasonal cycle, as well as large inter-annual variability. This variability can be related to the variability of the atmospheric conditions in the surface layer.

Summary
Modelling snowdrift sublimation on an Antarctic ice shelf

Excerpt
Anderson, P.: A Method for Rescaling Humidity Sensors at Temperatures Well Below Freezing, J. Atmos. Ocean. Tech., 11, 1388–1391, 1994.; Andreas, E.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, 1987.; Bintanja, R.: The contribution of snowdrift sublimation to the surface mass balance of Antarctica, Ann. Glaciol., 27, 251–259, 1998.; Bintanja, R.: Snowdrift suspension and atmospheric turbulence, {P}art 2: Results of model simulations, Bound.-Lay. Meteorol., 95, 369–395, 2000.; Bintanja, R.: Snowdrift sublimation in a katabatic wind region of the {A}ntarctic ice sheet, J. Appl. Meteorol., 40, 1952–1966, 2001a.; Bintanja, R.: Modelling snowdrift sublimation and its effect on the moisture budget of the atmospheric boundary layer, Tellus A, 53, 215–232, 2001b.; Bintanja, R. and Reijmer, C.: A simple parameterization for snowdrift sublimation over {A}ntarctic snow surfaces, J. Geophys. Res., 106, 31739–31748, 2001.; Box, J., Bromwich, D., Veenhuis, B., Bai, L.-S., Stroeve, J., Rogers, J., Steffen, K., Haran, T., and Wang, S.-H.: Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar {MM5} Output, J. Climate, 19, 2783–2800, 2006.; Budd, W.: The drifting of non-uniform snow particles, Studies in Antarctic Meteorology, 1966.; D{é}ry, S. J. and Yau, M. K.: A bulk blowing snow model, Bound.-Lay. Meteorol., 93, 237–251, 1999.; D{é}ry, S. J. and Yau, M. K.: Simulation of blowing snow in the {C}anadian {A}rctic using a double-moment model, Bound.-Lay. Meteorol., 99, 297–316, 2001.; D{é}ry, S. J. and Yau, M. K.: Large-scale mass balance effects of blowing snow and surface sublimation, J. Geophys. Res., 107, 4679, doi:10.1029/2001JD001251, 2002.; D{é}ry, S. J., Taylor, P. A., and Xiao, J. B.: The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer, Bound.-Lay. Meteorol., 89, 251–283, 1998.; Ettema, J., Van den Broeke, M., Van Meijgaard, E., Van de Berg, W., Bamber, J., Box, J., and Bales, R.: Higher surface mass balance of the {G}reenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501,, doi:10.1029/2009GL038110, 2009.; Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S., Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M., Traversi, R., Udisti, R., and Fily, M.: New Estimations of Precipitation and Surface Sublimation in {E}ast {A}ntarctica from Snow Accumulation Measurements, Clim. Dynam., 23, 803–813, 2004.; Gall{é}e, H., Guyomarch, G., and Brun, E.: Impact of Snow Drift on the {A}ntarctic Ice Sheet Surface Mass Balance: Possible Sensitivity to Snow-Surface Properties, Bound.-Lay. Meteorol., 99, 1–19, 2001.; Giovinetto, M. B., Bromwich, D. H., and Wendler, G.: Atmospheric net transport of water vapor and latent heat across 70 degrees S, J. Geophys. Res., 97, 917–930, 1992.; Hyland, R. W. and Wexler, A.: Formulations for the Thermodynamic Properties of the saturated Phases of H2O from 173.15 K to 473.15 K, American Society of Heating, Refrigerating, and Air-Conditioning Engineers Trans, 89, 500–519, 1984.; King, J., Anderson, P., Smith, M., and Mobbs, S.: The Surface Energy and Mass Balance at {H}alley, {A}ntarctica during winter, J. Geophys. Res., 101, 19119–19128, 1996.; K{ö}nig, G.: Roughness length of an {A}ntarctic ice shelf, Polarforschung, 55, 27–32, 1985.; K{ö}nig-Langlo, G., King, J., and Pettre, P.: Climatology of the Three Coastal {A}ntarctic Stations {D}umont d'{U}rville, {N}eumayer, and {H}alley, J. Geophys. Res., 103, 10935–10946, 1998.; K{ö}nig-Langlo, G. C. and Loose, B.: The meteorological obser

 

Click To View

Additional Books


  • Elevation and Elevation Change of Greenl... (by )
  • Worldwide Widespread Decadal-scale Decre... (by )
  • The Gamdam Glacier Inventory: a Quality-... (by )
  • Bulletin - New York State Museum Volume: no. 15 1895 (by )
  • Magazin Für Das Neueste Aus Der Physik U... Volume: 2 (by )
  • The Effects of Additional Black Carbon o... (by )
  • Modelling Historical and Recent Mass Los... (by )
  • Spectral Reflectance of Solar Light from... (by )
  • Empirical Correction of Xbt Fall Rate an... (by )
  • The Geomorphological Effect of Cornice F... (by )
  • Carnegie Institution of Washington Publi... Volume: 1920 v.2 (by )
  • Recent Ice Dynamic and Surface Mass Bala... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.