World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Uncertainties in the Global Temperature Change Caused by Carbon Release from Permafrost Thawing : Volume 6, Issue 2 (05/04/2012)

By Burke, E. J.

Click here to view

Book Id: WPLBN0004022658
Format Type: PDF Article :
File Size: Pages 38
Reproduction Date: 2015

Title: Uncertainties in the Global Temperature Change Caused by Carbon Release from Permafrost Thawing : Volume 6, Issue 2 (05/04/2012)  
Author: Burke, E. J.
Volume: Vol. 6, Issue 2
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Jones, C. D., Hartley, I. P., & Burke, E. J. (2012). Uncertainties in the Global Temperature Change Caused by Carbon Release from Permafrost Thawing : Volume 6, Issue 2 (05/04/2012). Retrieved from http://www.ebooklibrary.org/


Description
Description: Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, UK. Under climate change thawing permafrost will cause old carbon which is currently frozen and inert to become vulnerable to decomposition and release into the climate system. This paper develops a simple framework for estimating the impact of this permafrost carbon release on the global mean temperature (P-GMT). The analysis is based on simulations made with the Hadley Centre climate model (HadGEM2-ES) for a range of representative CO2 concentration pathways. Results using the high concentration pathway (RCP 8.5) suggest that by 2100 the annual methane (CH4) emission rate is 2–59 Tg CH4 yr−1 and 50–270 Pg C has been released as CO2 with an associated P-GMT of 0.08–0.36 °C (all 5th–95th percentile ranges). P-GMT is considerably lower – between 0.02 and 0.11 °C – for the low concentration pathway (RCP2.6). The uncertainty in climate model scenario causes about 50% of the spread in P-GMT by the end of the 21st century, indicating that the effect of permafrost thaw on global mean temperature is currently controllable by mitigation measures. The distribution of soil carbon, in particular how it varies with depth, contributes to about half of the remaining spread in P-GMT by 2100 with quality of soil carbon and decomposition processes contributing a further quarter each. These latter uncertainties could be reduced through additional observations. Over the next 20–30 yr, whilst scenario uncertainty is small, improving our knowledge of the quality of soil carbon will contribute significantly to reducing the spread in the, albeit relatively small, P-GMT.

Summary
Uncertainties in the global temperature change caused by carbon release from permafrost thawing

Excerpt
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R .L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, doi:10.5194/gmd-4-677-2011, 2011.; Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne Data, Science, 327, 322–325, doi:10.1126/science.1175176, 2010.; Burke, E. J., Dankers, R. D., and Jones, C. D.: Evaluating changes in near-surface permafrost during the 20th century with the JULES land surface model, in preparation, 2012.; Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt, U., and Johansson, M.: A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts, Geophys. Res. Lett., 37, L14705, doi:10.1029/2009GL042064, 2010.; Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, doi:10.5194/gmd-4-701-2011, 2011.; Collins, W., Boucher, O., Jones, C., Totterdell, I., Halloran, P., Woodward, S., O'Connor, F., Bellouin, N., Rumbold, S., Gedney, N., and Gregory, J.: Non-CO2 biogeochemical feedbacks in the HadGEM2 Earth system model, Joint DECC and Defra Met Office Hadley Centre Climate Programme, Reference: DECC/Defra GA01101, February 2011, D2.3.2, 2011a.; Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, doi:10.5194/gmd-4-1051-2011, 2011b.; Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.; Dutta, K., Schuur, E. A. G., Neff, J. C., and Zimov, S. A.: Potential carbon release from permafrost soils of Northeastern Siberia, Glob. Change Biol., 12, 2336–2351, 2006.; Etzelmüller, B., Schuler, T. V., Isaksen, K., Christiansen, H. H., Farbrot, H., and Benestad, R.: Modeling the temperature evolution of Svalbard permafrost during the 20th and 21st century, The Cryosphere, 5, 67–79, doi:10.5194/tc-5-67-2011, 2011.; Falloon, P. D., Smith, P., Coleman, K., and Marshall, S.: Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the rothamsted carbon model, Soil Biol. Biochem., 30, 1207–1211, 1998.; Frauenfeld, O. W., Zhang, T., Barry, R. G., and Gilichinsky, D.: Interdecadal changes in seasonal freeze and thaw depths in Russia, J. Geophys. Res., 109, D05101, doi:10.1029/2003JD004245, 2004.; Frolking, S., Roulet, N. T., Moore, T. R., Richard, P. J. H., Lavoie, M., and Muller, S. D.: Modeling northern peatland decomposition and peat accumulation, Ecosystems, 4, 479–498, 2001.; Gruber, N., Friedlingstein, P., Field, C. B., Valentini, R., Heimann, M., Richey, J. E., Romero-Lankao, P., Schulze, D., and Chen, C.-T. A.: The vuln

 

Click To View

Additional Books


  • Petermann Glacier, North Greenland: Mass... (by )
  • Dating of a Dome Fuji (Antarctica) Shall... (by )
  • Longest Time Series of Glacier Mass Chan... (by )
  • Sensitivity of Alpine Glacial Change Det... (by )
  • The Growth of Sublimation Crystals and S... (by )
  • Monitoring of Active Layer Dynamics at a... (by )
  • A New 1 Km Digital Elevation Model of An... (by )
  • Sensitivity of Airborne Geophysical Data... (by )
  • Satellite-derived Volume Loss Rates and ... (by )
  • Modeling Near-surface Firn Temperature i... (by )
  • Brief Communication: Ikaite (Caco3*6H2O)... (by )
  • Present and Lgm Permafrost from Climate ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.