World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Destabilisation of an Arctic Ice Cap Triggered by a Hydro-thermodynamic Feedback to Summer-melt : Volume 8, Issue 3 (23/05/2014)

By Dunse, T.

Click here to view

Book Id: WPLBN0004023027
Format Type: PDF Article :
File Size: Pages 35
Reproduction Date: 2015

Title: Destabilisation of an Arctic Ice Cap Triggered by a Hydro-thermodynamic Feedback to Summer-melt : Volume 8, Issue 3 (23/05/2014)  
Author: Dunse, T.
Volume: Vol. 8, Issue 3
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Dunse, T., Hagen, J. O., Schuler, T. V., Reijmer, C. H., Schellenberger, T., & Kääb, A. (2014). Destabilisation of an Arctic Ice Cap Triggered by a Hydro-thermodynamic Feedback to Summer-melt : Volume 8, Issue 3 (23/05/2014). Retrieved from http://www.ebooklibrary.org/


Description
Description: Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway. Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a−1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a−1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

Summary
Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

Excerpt
Alley, R. B., Fahnestock, M., and Joughin, I.: Climate change. Understanding glacier flow in changing times, Science, 322, 1061–1062, doi:10.1126/science.1166366, 2008.; AMAP: Snow, Water, Ice, Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere, vol. XII, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2011.; Bindschadler, R.: The importance of pressurized subglacial water in separation and sliding at the glacier bed, J. Glaciol., 29, 3–19, 1983.; Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., M., K., Bonani, G., and Ivy, S.: Evidence for massive discharges of icebergs into the North-Atlantic ocean during the last glacial period, Nature, 360, 245–249, 1992.; Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., and Wilson, A. B.: Central West Antarctica among the most rapidly warming regions on Earth, Nat. Geosci., 6, 139–145, doi:10.1038/ngeo1671, 2013.; Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J., and Velicogna, I.: Revisiting the Earth's sea-level and energy budgets from 1961 to 2008, Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794, 2011.; Clarke, G.: Thermal regulation of glacier surging, J. Glaciol., 16, 231–250, 1976.; Clarke, G.: Fast glacier flow – ice streams, surging, and tidewater glaciers, J. Geophys. Res.-Solid, 92, 8835–8841, 1987.; Comiso, J. C.: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements, J. Climate, 13, 1674–1696, 2.0.CO;2>doi:10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2, 2000.; Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., Jairo Gonzalez, J., Khim, B.-K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Lopez Galindo, A., Patterson, M. O., Sangiorgi, F., Pierce, E. L., and Brinkhuis, H.: Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nat. Geosci., 6, 765–769, doi:10.1038/NGEO1889, 2013.; den Ouden, M. A. G., Reijmer, C. H., Pohjola, V., van de Wal, R. S. W., Oerlemans, J., and Boot, W.: Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard, The Cryosphere, 4, 593–604, doi:10.5194/tc-4-593-2010, 2010.; Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A. L., Henderson, G. M., Okuno, J., and Yokoyama, Y.: Ice-sheet collapse and sea-level rise at the Bolling warming 14 and 600 years ago, Nature, 483, 559–564, doi:10.1038/nature10902, 2012.; Dowdeswell, J. A., Hamilton, G., and Hagen, J.: The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions, J. Glaciol., 37, 388–400, 1991.; Dowdeswell, J. A., Unwin, B., Nuttall, A. M., and Wingham, D. J.: Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry, Earth Planet. Sc. Lett., 167, 131–140, 1999.; Dowdeswell, J. A., Ottesen, D., Evans, J., Cofaigh, C., and Anderson, J.: Submarine glacial landforms and rates of ice-stream collapse, Geology, 36, 819–822, 2008.; Dunse, T., Schuler, T. V., Hagen, J., Eiken, T., Brandt, O., and Høgda, K.: Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR, Ann. Glaciol., 50, 155–

 

Click To View

Additional Books


  • Quantifying the Jakobshavn Effect: Jakob... (by )
  • Mechanical Effect of Mélange-induced But... (by )
  • Esa's Ice Sheets Cci: Validation and Int... (by )
  • A Comparison of Glacier Melt on Debris-c... (by )
  • Parameterization of Single-scattering Pr... (by )
  • Radar Diagnosis of the Subglacial Condit... (by )
  • Influence of the Tungurahua Eruption on ... (by )
  • First Sentinel-1 Detections of Avalanche... (by )
  • Simulating the Antarctic Ice Sheet in th... (by )
  • Variability and Trends in Laptev Sea Ice... (by )
  • Comparison of Glaciological and Volumetr... (by )
  • Reconstruction of the 1979–2006 Greenlan... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.