World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Searise Experiment Revisited: Sources of Spread in Multi-model Projections of the Greenland Ice-sheet : Volume 9, Issue 1 (27/02/2015)

By Saito, F.

Click here to view

Book Id: WPLBN0004023164
Format Type: PDF Article :
File Size: Pages 42
Reproduction Date: 2015

Title: Searise Experiment Revisited: Sources of Spread in Multi-model Projections of the Greenland Ice-sheet : Volume 9, Issue 1 (27/02/2015)  
Author: Saito, F.
Volume: Vol. 9, Issue 1
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Blatter, H., Takahashi, K., Abe-Ouchi, A., & Saito, F. (2015). Searise Experiment Revisited: Sources of Spread in Multi-model Projections of the Greenland Ice-sheet : Volume 9, Issue 1 (27/02/2015). Retrieved from http://www.ebooklibrary.org/


Description
Description: Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan. The present paper revisits the future surface-climate experiments of the Greenland ice-sheet proposed by the Sea-level Response to Ice Sheet Evolution (SeaRISE, Bindschadler et al., 2013) study. The projections of the different SeaRISE participants show diversion, which has not been examined in detail to date. A series of sensitivity experiments are conducted and analyzed using the Ice-sheet model for Integrated Earth-system Studies (IcIES) by replacing one or more formulations of the model parameters with those adopted in other model(s). The results show that the main sources of the diversion between the projections of the different SeaRISE participants are differences in the initialization methods and in the surface mass balance methods, and both aspects have almost equal impact on the results. Treatment of ice-sheet margins in the simulation has a secondary impact on the diversion. We conclude that spinning-up the model using fixed topography through the spin-up period while the temperature is allowed to evolve according to the surface temperature history is the preferred representation at least for the experiment configuration examined in the present paper. A benchmark model experiment set-up that most of the numerical model can perform is proposed for future intercomparison projects, in order to evaluate the uncertainties relating to pure ice-sheet model flow characteristics.

Summary
SeaRISE experiment revisited: sources of spread in multi-model projections of the Greenland ice-sheet

Excerpt
A\dhalgeirsdóttir, G., Aschwanden, A., Khroulev, C., Boberg, F., Mottram, R., Lucas-Picher, P., and Christensen, J.: Role of model initialization for projections of 21st-century Greenland ice sheet mass loss, J. Glaciol., 60, 782–794, doi:10.3189/2014JoG13J202, 2014.; Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, doi:10.3189/002214310792447699, 2010.; Bamber, J. L., Layberry, R. L., and Gogenini, S. P.: A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, 2001.; Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), J. Glaciol., 59, 195–224, 2013.; Braithwaite, R. J. and Olesen, O. B.: Calculation of glacier ablation from air temperature, West Greenland, in: Glacier Fluctuations and Climatic Change, edited by: Oerlemans, J., Kluwer Academic Publishers, Dordrecht, 219–233, 1989.; Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, 4th Edn., Academic Press, Amsterdam, 2010.; Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gudestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218–220, 1993.; Edwards, T. L., Fettweis, X., Gagliardini, O., Gillet-Chaulet, F., Goelzer, H., Gregory, J. M., Hoffman, M., Huybrechts, P., Payne, A. J., Perego, M., Price, S., Quiquet, A., and Ritz, C.: Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet, The Cryosphere, 8, 195–208, doi:10.5194/tc-8-195-2014, 2014.; Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110, 2009.; Fausto, R. S., Ahlstrøm, A. P., As, D. V., Bøggild, C. E., and Johnsen, S. J.: A new present-day temperature parameterization for Greenland, J. Glaciol., 55, 95–105, 2009.; Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561–1576, doi:10.5194/tc-6-1561-2012, 2012.; Goelzer, H., Huybrechts, P., Fürst, J., Nick, F., Andersen, M., Edwards, T., Fettweis, X., Payne, A., and Shannon, S.: Sensitivity of Greenland ice sheet projections to model formulations, J. Glaciol., 59, 733–749, doi:10.3189/2013JoG12J182, 2013.; Huybrechts, P., Letréguilly, A., and Reeh, N.: The Greenland ice sheet and greenhouse warming, Palaeogeogr. Palaeocl., 89, 399–412, 1991.; Graversen, R., Drijfhout, S., Hazeleger, W., van de Wal, R., Bintanja, R., and Helsen, M.: Greenland's contribution to global sea-level rise by the end of the 21st century, Clim. Dynam., 37, 1427–1442, doi:

 

Click To View

Additional Books


  • Ikaite Crystals in Melting Sea Ice – Imp... (by )
  • Spatial Patterns in Glacier Area and Ele... (by )
  • A Balanced Water Layer Concept for Subgl... (by )
  • North Atlantic Warming and Declining Vol... (by )
  • Influence of Stress, Temperature and Cry... (by )
  • The Effect of Snow/Sea Ice Type on the R... (by )
  • A Model Study of the Energy and Mass Bal... (by )
  • Overview on Radon Measurements in Arctic... (by )
  • Landsat Tm and Etm+ Derived Snowline Alt... (by )
  • Reducing Uncertainties in Projections of... (by )
  • Seismic Wave Propagation in Anisotropic ... (by )
  • Snow Specific Surface Area Simulation Us... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.