World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Effect of Soil Property Uncertainties on Permafrost Thaw Projections: a Calibration-constrained Analysis : Volume 9, Issue 3 (29/06/2015)

By Harp, D. R.

Click here to view

Book Id: WPLBN0004023223
Format Type: PDF Article :
File Size: Pages 54
Reproduction Date: 2015

Title: Effect of Soil Property Uncertainties on Permafrost Thaw Projections: a Calibration-constrained Analysis : Volume 9, Issue 3 (29/06/2015)  
Author: Harp, D. R.
Volume: Vol. 9, Issue 3
Language: English
Subject: Science, Cryosphere, Discussions
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Atchley, A. L., Painter, S. L., Coon, E. T., Romanovsky, V. E., Wilson, C. J., Rowland, J. C., & Harp, D. R. (2015). Effect of Soil Property Uncertainties on Permafrost Thaw Projections: a Calibration-constrained Analysis : Volume 9, Issue 3 (29/06/2015). Retrieved from

Description: Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA. The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.

Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev. Discuss., 8, 3235–3292, doi:10.5194/gmdd-8-3235-2015, 2015.; Beringer, J., Lynch, A. H., Chapin III, F. S., Mack, M., and Bonan, G. B.: The representation of arctic soils in the land surface model: the importance of mosses, J. Climate, 14, 3324–3335, 2001.; Chadburn, S. E., Burke, E. J., Essery, R. L. H., Boike, J., Langer, M., Heikenfeld, M., Cox, P. M., and Friedlingstein, P.: Impact of model developments on present and future simulations of permafrost in a global land-surface model, The Cryosphere Discuss., 9, 1965–2012, doi:10.5194/tcd-9-1965-2015, 2015.; Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601–604, 1978.; Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, doi:10.5194/gmd-4-1051-2011, 2011.; Coon, E. T., Moulton, J. D., and Painter, S. L.: Managing complexity in land surface and near-surface process models, Environ. Modell. Softw., under review, 2015b.; Coon, E., Moulton, J., Berndt, M., Manzini, G., Garimella, R., Lipnikov, K., and Painter, S.: Coupled surface and subsurface hydrologic flow using mimetic finite differences, Adv. Water Resour., in review, 2015a.; Cosby, B., Hornberger, G., Clapp, R., and Ginn, T.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, 1984.; Doherty, J.: Model-Independent Parameter Estimation, User Manual, Watermark Numerical Computing, Australia, 2004.; Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The community climate system model version 4, J. Climate, 24, 4973–4991, 2011.; Hinzman, L., Kane, D., Gieck, R., and Everett, K.: Hydrologic and thermal properties of the active layer in the Alaskan Arctic, Cold Reg. Sci. Technol., 19, 95–110, 1991.; Hinzman, L. D., Goering, D. J., and Kane, D. L.: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions, J. Geophys. Res.-Atmos., 103, 28975–28991, 1998.; Hinzman, L. D., Bettez, N., Chapin, F., Dyurgerov, M., Fastie, C., Griffith, D., Hope, A., Huntington, H., Jensen, A., Kane, D., Kofinas, G., Lynch, A., Lloyd, A., McGuire, A. D., Nelson, F. E., Osterkamp, T., Oechel, W. C., Racine, C., Romanovsky, V. E., Schimel, J., Stow, D., Sturm, M., Tweedie, C. E., Vourlitis, G., Walker, M., Webber, P. J., Welker, J., Winker, K., and Yoshikawa, K.: Evidence and implications of recent climate change in terrestrial regions of the Arctic, in: AGU Fall Meeting Abstracts, vol. 1, American Geophysical Union, San Francisco, USA, p. 0010, 2002.; Ji, J.: A climate-vegetation interaction model: simulating physical and biological processes at the surface, J. Biogeogr., 22, 445–451, 1995.; Jiang, Y., Zhuang, Q., and O'Donnell, J. A.: Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model, J. Geophys. Res., 117, D11110, doi:10.1029/2012JD017512, 2012.; Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat


Click To View

Additional Books

  • Model Calibration for Ice Sheets and Gla... (by )
  • Arctic Ocean Sea Ice Snow Depth Evaluati... (by )
  • Multi-decadal Marine and Land-terminatin... (by )
  • Reduced Glacier Sliding Caused by Persis... (by )
  • Stable Isotope and Gas Properties of Two... (by )
  • Transient Thermal Effects in Alpine Perm... (by )
  • Fram Strait Spring Ice Export and Septem... (by )
  • Results of the Marine Ice Sheet Model In... (by )
  • Theoretical Framework for Estimating Sno... (by )
  • Isotope Hydrological Studies on the Pere... (by )
  • Parameterization for Subgrid-scale Motio... (by )
  • Cryogenic and Non-cryogenic Pool Calcite... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.