World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (Sao Omps) Formaldehyde Retrieval : Volume 8, Issue 9 (07/09/2015)

By González Abad, G.

Click here to view

Book Id: WPLBN0004023440
Format Type: PDF Article :
File Size: Pages 32
Reproduction Date: 2015

Title: Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (Sao Omps) Formaldehyde Retrieval : Volume 8, Issue 9 (07/09/2015)  
Author: González Abad, G.
Volume: Vol. 8, Issue 9
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Chance, K., Liu, X., Seftor, C., Abad, G. G., & Vasilkov, A. (2015). Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (Sao Omps) Formaldehyde Retrieval : Volume 8, Issue 9 (07/09/2015). Retrieved from

Description: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA. This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on-board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a consistent set of long term data from two different instruments that share a similar concept. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good quality retrievals. Indeed, the improved signal to noise ratio (SNR) of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ~ 5 × 10−4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm−2. Total vertical column densities (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products with our OMPS product using one year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product are 21 % between OMI SAO and OMPS SAO and 38 % between OMI BIRA and OMPS SAO for eight selected regions.

Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval

Anderson, L. G., Lanning, J. A., Barrell, R., Miyagishima, J., Jones, R. H., and Wolfe, P.: Sources and sinks of formaldehyde and acetaldehyde: An analysis of Denver's ambient concentration data, Atmos. Environ., 30, 2113–2123, doi:10.1016/1352-2310(95)00175-1, 1996.; Barkley, M. P., Palmer, P. I., Kuhn, U., Kesselmeier, J., Chance, K., Kurosu, T. P., Martin, R. V., Helmig, D., and Guenther, A.: Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns, J. Geophys. Res.-Atmos., 113, D20304, doi:10.1029/2008JD009863, 2008.; Barkley, M. P., Palmer, P. I., Ganzeveld, L., Arneth, A., Hagberg, D., Karl, T., Guenther, A., Paulot, F., Wennberg, P. O., Mao, J., Kurosu, T. P., Chance, K., Müller, J.-F., De Smedt, I., Van Roozendael, M., Chen, D., Wang, Y., and Yantosca, R. M.: Can a state of the art chemistry transport model simulate Amazonian tropospheric chemistry?, J. Geophys. Res.-Atmos., 116, D16302, doi:10.1029/2011JD015893, 2011.; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, doi:10.1029/2001JD000807, 2001.; Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res.-Atmos., 109, D04311, doi:10.1029/2003JD003962, 2004.; Brune, W. H., Tan, D., Faloona, I. F., Jaeglé, L., Jacob, D. J., Heikes, B. G., Snow, J., Kondo, Y., Shetter, R., Sachse, G. W., Anderson, B., Gregory, G. L., Vay, S., Singh, H. B., Davis, D. D., Crawford, J. H., and Blake, D. R.: OH and HO2 chemistry in the North Atlantic free troposphere, Geophys. Res. Lett., 26, 3077–3080, doi:10.1029/1999GL900549, 1999.; Chance, K.: Analysis of BrO measurements from the Global Ozone Monitoring Experiment, Geophys. Res. Lett., 25, 3335–3338, doi:10.1029/98GL52359, 1998.; Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295, doi:10.1016/j.jqsrt.2010.01.036, 2010.; Chance, K. and Orphal, J.: Revised ultraviolet absorption cross sections of H2CO for the HITRAN database, J. Quant. Spectrosc. Ra., 112, 1509–1510, doi:10.1016/j.jqsrt.2011.02.002, 2011.; Chance, K., Palmer, P. I., Spurr, R. J. D., Martin, R. V., Kurosu, T. P., and Jacob, D. J.: Satellite observations of formaldehyde over North America from GOME, Geophys. Res. Lett., 27, 3461–3464, doi:10.1029/2000GL011857, 2000.; Chance, K., Kurosu, T. P., and Sioris, C. E.: Undersampling correction for array detector-based satellite spectrometers, Appl. Opt., 44, 1296–1304, doi:10.1364/AO.44.001296, 2005.; Chance, K., Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J., and Janz, S. J.: Tropospheric emissions: monitoring of pollution (TEMPO), 88660D, doi:10.1117/12.2024479, 2013.; Chance, K. V. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering, includ


Click To View

Additional Books

  • Correcting Spaceborne Reflectivity Measu... (by )
  • The Large-scale Spatio-temporal Variabil... (by )
  • Quantifying Lower Tropospheric Methane C... (by )
  • A Method for Improved Sciamachy Co2 Retr... (by )
  • Tropospheric Bro Column Densities in the... (by )
  • The Musica Metop/Iasi H2O and Δd Product... (by )
  • Theoretical Description of Functionality... (by )
  • A Flow-tube Based Laser-induced Fluoresc... (by )
  • Influence of the Calibration on Experime... (by )
  • Retrieval Algorithm for Densities of Mes... (by )
  • Validation of Routine Continuous Airborn... (by )
  • Absorbing Aerosol Radiative Effects in t... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.