World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Drivers of Column-average Co2 Variability at Southern Hemispheric Total Carbon Column Observing Network Sites : Volume 13, Issue 6 (03/06/2013)

By Deutscher, N. M.

Click here to view

Book Id: WPLBN0003988538
Format Type: PDF Article :
File Size: Pages 46
Reproduction Date: 2015

Title: Drivers of Column-average Co2 Variability at Southern Hemispheric Total Carbon Column Observing Network Sites : Volume 13, Issue 6 (03/06/2013)  
Author: Deutscher, N. M.
Volume: Vol. 13, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Mikaloff Fletcher, S. E., Sherlock, V., Macatangay, R., T. Griffit, D. W., Connor, B. J., Shiona, H.,...Robinson, J. (2013). Drivers of Column-average Co2 Variability at Southern Hemispheric Total Carbon Column Observing Network Sites : Volume 13, Issue 6 (03/06/2013). Retrieved from

Description: Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia. We investigate factors that drive the variability in total column CO2 at the Total Carbon Column Observing Network sites in the Southern Hemisphere using CarbonTracker analysed fluxes tagged by process and by source region. We show that the terrestrial biosphere is the largest driver of variability in the Southern Hemisphere column CO2, however, it does not dominate in the same fashion as in the Northern Hemisphere. Local and hemispheric scale biomass burning can also play an important role, particularly at the tropical site, Darwin. The magnitude of seasonal variability in the column-average dry-air mole fraction of CO2, XCO2, is also much smaller in the Southern Hemisphere and comparable in magnitude to the annual increase. Comparison of measurements to the model simulations highlights that there is some discrepancy between the two timeseries, especially in the early part of the Darwin data record. We show that this mismatch is most likely due to erroneously estimated local fluxes in the Australian tropical region, which are associated with enhanced photosynthesis caused by early rainfall during the tropical monsoon season.

Drivers of column-average CO2 variability at Southern Hemispheric total carbon column observing network sites

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, doi:10.1029/2000GB001382, 2001.; Andrews, A., Boering, K., Daube, B., Wofsy, S., Loewenstein, M., Jost, H., Podolske, J., Webster, C., Herman, R., Scott, D., Flesch, G., Moyer, E., Elkins, J., Dutton, G., Hurst, D., Moore, F., Ray, E., Romashkin, P., and Strahan, S.: Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32295–32314, doi:10.1029/2001JD000465, 2001.; Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, doi:10.5194/amt-3-781-2010, 2010.; Burrows, J., Holzle, E., Goede, A., Visser, H., and Fricke, W.: Sciamachy – scanning imaging absorption spectrometer for atmospheric chartography, Acta Astronaut., 35, 445–451, doi:10.1016/0094-5765(94)00278-T, 1995.; Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., and Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888, 2011.; Chaves, M., Pereira, J., Maroco, J., Rodrigues, M., Ricardo, C., Osorio, M., Carvalho, I., Faria, T., and Pinheiro, C.: How plants cope with water stress in the field. Photosynthesis and growth, Ann. Bot., 89, 907–916, doi:10.1093/aob/mcf105, 2002.; Enting, I. G. and Mansbridge, J. V.: Seasonal sources and sinks of atmospheric CO(2) Direct inversion of filtered data, Tellus B, 41, 111–126, doi:10.1111/j.1600-0889.1989.tb00129.x, 1989.; GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – Carbon Dioxide, CD-ROM, also available on Internet via anonymous FTP to, Path: ccg/co2/GLOBALVIEW, 2011.; Griffith, D. W. T., Deutscher, N. M., Caldow, C., Kettlewell, G., Riggenbach, M., and Hammer, S.: A Fourier transform infrared trace gas and isotope analyser for atmospheric applications, Atmos. Meas. Tech., 5, 2481–2498, doi:10.5194/amt-5-2481-2012, 2012.; Crisp, D., Atlas, R. M., Breon, F. M., Brown, L. R., Burrows, J. P., Cia


Click To View

Additional Books

  • 1997–2007 Co Trend at the High Alpine Si... (by )
  • Perturbations of the Optical Properties ... (by )
  • Effect of Regional Precursor Emission Co... (by )
  • Multi-model Mean Nitrogen and Sulfur Dep... (by )
  • Simulation of Denitrification and Ozone ... (by )
  • Ozone and Aerosol Tropospheric Concentra... (by )
  • Winter and Summer Time Size Distribution... (by )
  • Observations of the Diurnal and Seasonal... (by )
  • Aura Mls Observations of the Westward-pr... (by )
  • Retrieval of Upper Tropospheric Water Re... (by )
  • The Heidelberg Iterative Cloud Retrieval... (by )
  • A Chemistry-transport Model Simulation o... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.